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ABSTRACT

Recruiting participants for software engineering research has been
a primary concern of the human factors community. This is partic-
ularly true for quantitative investigations that require a minimum
sample size not to be statistically underpowered. Traditional data
collection techniques, such as mailing lists, are highly doubtful
due to self-selection biases. The introduction of crowdsourcing
platforms allows researchers to select informants with the exact
requirements foreseen by the study design, gather data in a concise
time frame, compensate their work with fair hourly pay, and most
importantly, have a high degree of control over the entire data
collection process. This experience report discusses our experience
conducting sample studies using Prolific, an academic crowdsourc-
ing platform. Topics discussed are the type of studies, selection
processes, and power computation.
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1 INTRODUCTION

Recruiting software professionals for empirical software engineer-
ing investigation is a typical barrier for several research questions,
especially for independent researchers. Often, such hurdles are
bypassed by using students as a proxy of software developers, jeop-
ardizing the generalizability of the study’s conclusion [4]. Other
options are to recruit developers through professional mailing lists
or social media, which implies severe self-selection bias and ethical
issues about developers’ privacy [6]. On the other hand, scholars
employed by big software organizations have direct access to a
massive amount of developers (also above 3,500 [5]). However, one
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company employs all those informants, limiting such studies’ gen-
eralization. Another typical issue is the sampling strategy. Most
software engineering papers rely on convenience sampling [1],
representing a significant threat to validity.

In other words, most performed research involving software
engineers in our community, so far, suffers from severe limitations
typically represented by the low generalizability of their conclu-
sions.

Sample studies have an enormous potential to guide us towards
a more theory-driven discipline [17, 18]. In such investigations, the
relevant variables in a given population (i.e., of people or systems)
or the relation between more characteristics are collected through
informants. The ultimate goal is to generalize the findings. Using
the taxonomy of Stol & Fitzgerald [18], while research conducted in
natural settings, such as field studies, aim to understand a specific
research phenomenon, contrived settings focus on causal relations
primarily through experiments: neutral settings allow to investigate
the world as it is. With sample studies, we can isolate the typical
noise of field study and focus on the characteristics and interactions
of the identified variables.

Therefore, any investigation that can (i) operationalize research
variables (e.g., software quality, size, number of commits, produc-
tivity, gender)!, (ii) have some underlying hypotheses about the
relationship of the researched variables, and (iii) have a sufficiently
large enough population to ensure well-powered statistical analysis
is an ideal candidate for a sample study research design.

Unfortunately, sample studies have three main barriers. First, to
ensure the representatives of the selected population, i.e., how to
be sure that our informants are indeed software engineers? Second,
find enough data points to perform a statistically well-powered
analysis. Third, operationalize your variables to be sure that they
reflect the investigated phenomenon. Crowdsourcing platforms,
such as Prolific?, directly address the first two barriers. Ensuring
construct validity is a more complicated task, and we refer to Russo
& Stol for more practical advice [15].

In the following, we will discuss how we addressed the selection
process of human participants and dealt with power computations
in some of our studies using Prolific [2, 9-14, 16, 19].

2 SELECTION PROCESS

Through Prolific, you have to channel your own survey. By January
2022, Prolific has more than 150,000 active users. We administered
our surveys on Qualtrics®. Other scholars used free instruments,
such as Google Forms [8]. Ralph et al. explain in their paper why
the use of Google Forms was not a good idea and, in hindsight,

!In this exposition, we will not consider construct validity issues.
Prolific is an academic data collection platform: www.prolific.co.
3www.qualtrics.com.
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they would opt for Qualtrics. On Prolific, the scholar can choose
whenever the survey has to be completed using a smartphone, a
tablet, or a desktop computer. We allowed only participants to fill
the survey using a desktop computer to ensure the participants’
focus.

The first selection process happens in Prolific, where partici-
pants self-selected themselves by providing several demographics.
Although it is not possible to select software engineers directly,
pre-screening helps to narrow down the relevant populations. In
our past studies, we selected “have knowledge of software devel-
opment techniques”, “have computer programming skills”, “use
technology at work (e.g., software) at least once a day”, and have an
“approval rate of at least 95%”. The last criterion refers to the level
of reliability of Prolific platform members in Prolific past surveys.
By January 2022, the Prolific users with such characteristics are
more than 15,500. We do not suggest selecting per Industry since
software engineers are employed in various sectors, not only soft-
ware. Similarly, we do not recommend opting for balanced gender
distribution since it would bias the results, considering that women
represent (unfortunately) a 20%-30% minority [14].

Still, we can not be sure if these candidates are indeed software
engineers. They could also have a similar profession, e.g., control
engineers. Thus, proper screening is required through a pilot study.
Pilot studies are concise studies where specific software engineering
competence is tested. To do that, we used a one-minute time-boxed
three-question multiple-choice survey. Danilova et al. developed a
list of the most compelling question to ask in such pilot studies; we
strongly recommend using those [3].

After the pilot study, the researcher can select only the candidates
who responded correctly in the given time. Once the cohort has been
finalized and selected, they are then invited to take the complete
survey. Here, usual recommendations about running surveys apply
(e.g., randomization). In addition, we used a number (2-3) quality
attention checks to ensure that informants are indeed focused on
the survey.

3 POWER ANALYSIS

How many participants are needed in a study to minimize the proba-
bility of making Type II (false negative) errors? Power assumptions
should be at the very core of every sample study design. To do
that, G*Power is a very valuable tool*. There, based on the type
of analysis, you can perform an a priori or a sensitivity analysis.
As a reviewer, you can also perform a post-hoc analysis to assess
whenever the sample size is large enough. Russo & Stol provide a
short explanation about the use of G*Power for Structural Equation
Modeling analyses.

Although our primary concern is underpowered studies that lead
to flawed theories, we are also worried about Type-I (false-positive)
errors. This typically happens when the analysis deals with a large
number of variables. In such cases, the alpha levels need to be
adjusted accordingly [11]. As a suggestion, we do not recommend
using a Bonferroni correction since it is overly conservative. By
modifying the alpha threshold, the test statistic (e.g., p-value, t-
value) also needs to be modified. For example, in Russo et al., we

4https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-
arbeitspsychologie/gpower.
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dealt with over 50 variables and performed a high number of tests
[11]. In that case, we considered significant only relations that had
a p-value smaller than 0.003.

In most cases, computing the minimum sample size is a relatively
straightforward task (when dealing with nested or higher-order
data, things become more complex). Adjusting the alpha level is not.
Thus, our recommendation is to be guided by previous literature,
especially methodologically more mature disciplines. The software
engineering community also underwent a significant challenge
by developing the Empirical Standards [7], which is an excellent
starting point to start developing a proper sample study.
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