
Agile Knowledge Engineering for Mission
Critical Software Requirements

Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

Abstract This chapter explains how a mission critical Knowledge-Based System
(KBS) has been designed and implemented for a real case study of a governamental
organization. The KBS is based on an ontology used to merge the different mental
models of users and developers. Moreover, the ontology of the system is useful
for interoperability and knowledge representation. Both the ontology and the main
mission critical functionalities have been developed in agile iterations. The KBS
has been used for three development activities: (i) requirement disambiguation, (ii)
interoperability with some legacy systems, and (iii) information retrieval and display
of multiple informative sources. Moreover, the KBS has been developed using a
specific agile software development methodology inspired by Scrum but tailored
for Command and Control systems. Due to fast changing operational scenarios and
volatile requirements, traditional procedural development methodologies perform
poorly. Thus, a Scrum-like methodology, called iAgile, has been exploited.

Paolo Ciancarini
Institute of Cognitive Sciences and Technologies, Italian National Research Council (CNR).
Department of Computer Science & Engineering, University of Bologna.
Mura Anteo Zamboni, 7, 40126 Bologna, Italy. e-mail: paolo.ciancarini@unibo.it

Angelo Messina
Innopolis University, Russian Federation.
Defense & Security Software Engineers Association.
Via A. Bertoloni, 1/E – Pal.B – 00197 Roma, Italy. e-mail: segreteria@dssea.eu

Francesco Poggi
Department of Computer Science & Engineering, University of Bologna.
Mura Anteo Zamboni, 7, 40126 Bologna, Italy. e-mail: francesco.poggi5@unibo.it

Daniel Russo
Consorzio Interuniversitario Nazionale per l’Informatica (CINI).
Institute of Cognitive Sciences and Technologies, Italian National Research Council (CNR).
Department of Computer Science & Engineering, University of Bologna.
Mura Anteo Zamboni, 7, 40126 Bologna, Italy. e-mail: daniel.russo@unibo.it
Corresponding author

1

paolo.ciancarini@unibo.it
segreteria@dssea.eu
francesco.poggi5@unibo.it
daniel.russo@unibo.it


2 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

1 Introduction

The most critical phase in system design is the one related to the full analysis and
understanding of “User Requirements”. Difficulties arise especially where the ambi-
guity on the functions to implement is a continuous challenge. Due to the volatility
of the user needs, changing of scenarios, and the intrinsic complexity of software
products, requirement engineering benefits from an Agile approach in terms of (i)
attainment with user’s contingent needs, (ii) velocity, and (iii) cost reduction.

Formal methods for requirement engineering have primarily been conceived to
drive efficiently the link between customers and developers [14]. They focus on re-
ducing the management risk connected with the initial software production phase.
The results achieved by these strategies are controversial and not always cost ef-
fective [24]. The diffusion of the use of Agile practices in the software production
process is putting the human factor as the key asset to capture and understand the
user needs [3].

We experienced an extensive use of methodologies to identify the “unexpressed
dimension” of the user requirements and to surface the “implicit” knowledge of
users within a real case study of an Italian governmental Agency.

The underlying principle is the methodological formalization of the non-linear
human thinking into requirements in the form of agile “User Stories”. Such an
approach was successfully implemented within a mission critical organization to
develop critical software applications. User stories are sentences written in natural
language and have a very simple structure. The vocabulary used to write a user story
depends on which user describes her need, thus is some sense it depends on the men-
tal model the user has of her needs [42]. Capturing the essence of the users mental
models [30] and overcoming the intrinsic ambiguity of the natural language are the
two main goals of our study. Multiple dimensions to build a dynamic representation
of requirements are the core innovative aspect of this work.

We give a problem definition of how to structure the description of user stories
following Agile principles. The lessons we learned and some considerations about
the importance of ontology based solutions for Knowledge Based Systems (KBS) in
this context are discussed. The proposed approach is useful not only for requirement
engineering but also to structure a highly interoperable knowledge representation
architecture which enables a fast and flexible use in mission critical contexts.

This chapter is organized as follows. In Section 2 we review the most critical
aspects of the use of KBS in mission critical systems; we also recall the basics of
the iAgile process. Section 3 shows how we manage requirements using an ontology.
The use of KBS technologies by the sponsoring organization is explained in Section
4. Finally, we draw our conclusions, summing up our findings in Section 5.



Agile Knowledge Engineering for Mission Critical Software Requirements 3

2 Complex software systems specification

In mission critical domains, the velocity of release delivery is often considered as
one of the most valuable assets. A release will usually be a partial version of the final
product, but the important issue is that it already works usefully for its users. An on-
field command view of a military operation (i.e., user view of a Command & Control
system) typically is: “I want the right information at the right time, disseminated and
displayed in the right way, so that Commanders can do the right things at the right
time in the right way” [4].

Important functionalities may be developed or refined in the first few sprints, due
to the continuous interaction between users and developers. The primary objective
of this constant dialogue within the development team is the rise of the implicit
and unexpressed knowledge, which will be translated by developers into software
artifacts.

One typical example in mission critical contexts is the “situational awareness”. It
may be described as: “The processes that concern the knowledge and understanding
of the environment that are critical to those who need to make decisions within the
complex mission space” [4].

Such a sentence contains a huge quantity of implicit knowledge. For example,
the interpretation of “those who need to make decisions” has to be clarified. More
generally, in a typical agile user story words like “situational awareness” would be
written as “as the one who needs to make decisions, I want to achieve the knowledge
and understanding of the environment that are critical to accomplish my mission”.
This statement is, of course, still overloaded with implicit knowledge.

In our case study, this issue was overcome through a careful composition of the
team including domain experts. Continuos face to face and on-line interactions al-
lowed to minimize information asymmetry [1] and align the different mental models
[30]. The main shared target was to deliver effective software to end users in a fast
way.

To understand better the main use cases, consider that a military C2 Information
System (IS) for mission critical purposes is essentially built on the exercise of au-
thority and direction by a properly designated commander over assigned forces in
the accomplishment of the mission [41].

In order to deliver this capability several integrations have to be taken into ac-
count, i.e., hardware, software, personnel, facilities, and procedures/routines. More-
over, such a system is supposed to coordinate and implement processes, like infor-
mation collection, personal and forces management, intelligence, logistics, commu-
nication, etc. These functions need to be displayed properly, in order to effectively
support command and control actions [28].

The IS we are reporting on has been based upon the development of mission spe-
cific services, called Functional Area Services (FAS), which represent sequences
of end-to-end activities and events, to execute System of Systems (SoS) capabil-
ities. These mission oriented services are set up as a framework for developing
users’ needs for new systems. Furthermore, mission services are characterized by
geographical or climate variables, as cultural, social and operative variables, which



4 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

represent functional areas or special organization issues. Mission services of the C2
system have been developed according to the NATO–ISAF CONOPS (Concept Of
Operations), as required by management of the governmental agency we cooperate
with:

• Battle Space Management (BSM)
• Joint Intelligence, Surveillance, Reconnaissance (JISR)
• Targeting Joint Fires (TJF)
• Military Engineering - Counter Improvised Explosive Devices (ME-CIED)
• Medical Evacuation (MEDEVAC)
• Freedom of Movement (FM)
• Force protection (FP)
• Service Management (SM)

Thus a C2 system is made of a set of functional areas which in turn respond to a
number of user stories.

2.1 Evolution of a Mission Critical Information System through
Agile

The mission critical information system we have studied is a Command & Control
system which was capable to support on-field missions according to the NATO–
ISAF’s framework. The initial idea was to develop a Network Centric Warfare sys-
tem (NCW) [2]. This system supports many of the operational functions defined in
the contest of the NCW, according to the requirement documentation. The system
has been employed in many exercises and operations and went through several tests.
Today the system is serving mission critical purposes in NATO–ISAF operations
e.g., the Afghanistan Mission Network.

However, several difficulties and limitations arose. The acquisitions were done
according to Waterfall procedures, started in the early 2000s and went on until re-
cently. The obsolescence of the components and related functionalities, along with
the maintenance and follow-up costs connected to the Waterfall software life cycle
are a big issue. Several problems are related to the impossibility to develop quickly
new functionalities required by on-field personnel in a fast-changing mission criti-
cal scenario e.g., a modern asymmetric warfare. This led the use of agile software
development paradigms which are supposed to overcome this crucial constraints.

Therefore, since 2014 a new “Main Command and Control System” (Main C2)
to support the former system (Tactical Command and Control System or Tactical
C2) has been developed. It was urgent to support the evolution of the Command and
Control system, assuring a higher customer satisfaction in a volatile requirement
situation. Moreover, due to budget cuts, the new system had to perform better with
less resources. Costs related to both development and maintenance had to shrink
rapidly.



Agile Knowledge Engineering for Mission Critical Software Requirements 5

Functional Area Services (FAS) are web-based services with a client–server ar-
chitecture. Any FAS software component can be separately modified to respond
to specific mission needs, as defined by users. The Main C2 has been validated in
NATO exercise for the first time at CWIX 20151, with positive results. Core ser-
vices are build to maximize interoperability with all the relevant NATO software
packages available and COTS product. Therefore, Main C2 is both flexible to im-
plement rapidly user needs, with high interoperability of already existing systems,
like the Tactical C2.

To develop it, a new methodology was implemented, applying the principles of
the “Agile Manifesto” [3] to both increase the customer satisfaction and reduce soft-
ware cost. After the Agency’s top management decided to go Agile, there was some
discussion about the method to use. There was the need to exploit Agile’s values
and capability but within a mission-critical environment.

Scrum was found as the most suited, since it allows a high degree of accountabil-
ity [39]. This methodology is very successful in commercial environments and the
most widespread Agile methodology [44]. Moreover, it was the methodology which
was the best known within the Agency. Therefore, other methodologies were not
really taken into consideration, even though they might have given similar results.

The teams are mixed: they include developers from the defense industry and
governmental officials, based at the Agency’s Headquarter in Rome. The initial pro-
duction phase was extremely successful and even the start up “Sprint” (production
cycle of five weeks) was able to deliver valuable software [12].

What happened was that the expectation of the Agency’s stakeholder grew
rapidly. From 2014 to 2016, the methodology was refined, to respond to mission
& security critical needs of the operations domain. Thus, an ad hoc Scrum-like
methodology was developed with the name of iAgile, and tested for the develop-
ment of the main C2 system [26].

This methodology, depicted in Fig. 1, has been developed for critical applica-
tions, where requirements change already during the first specification and after
delivering the first release. The adaptation of Scrum for the special needs of C2
software systems has also been proposed in [17].

A well known approach to analyzing ephemeral requirements consists of for-
malizing and prototyping the requirement specification using a suitable language,
like for instance Prolog [40]. The Humphrey’s Requirements Uncertainty Principle
remins us that, for a new software system, the requirement (the user story) will not
be completely known until after the users have used it [41]. Thus, within iAgile,
Ziv’s Uncertainty Principle in software engineering is applied, considering that un-
certainty is inherent and inevitable in software development processes and product.

The incremental development approach enables easily any change of require-
ments even in the later development iterations. In our case study, due to the close
interaction between the “requirement chain” i.e., from the customer to the develop-
ment team, FAS were delivered with a high degree of the customer satisfaction.

1 www.act.nato.int/cwix



6 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

Fig. 1 Sprint representation, inspired by [33]

The Scrum methodology developed within the Agency fully supports the change
of requirements according to contingent mission needs. The traditional command
chain was adapted to the development needs. Both structured and horizontal char-
acteristics of Scrum are particular effective in a critical environment. These two
characteristics are embedded in the model.

Mission critical organizations need to comply with a vertical organizational
chain, to empower different stakeholders to their duties. In the field where we had
this experience, a hierarchy enforces clear responsibility and accountability within
the command chain. So, the customer becomes the accountable official for the mis-
sion needed requirement. However, to develop different mission critical require-
ments, it is crucial to have a straightforward and direct communication and collabo-
ration with final users, according to the Agile Manifesto. Therefore, in the method-
ology, some user representative becomes part of the development team, allowing a
better understanding of the needs and a faster development of the feature.

One of the key strengths of the methodology is its flexibility. The process is
defined only at a high level, to be adapted in any theater of operation. It defines
values, principles, and practices focused on close collaboration, knowledge sharing,
fast feedback, and tasks automation.

The main stakehlder is the Product Owner (PO), who gives to the developing
team the first input which is a product’s vision. It is a high level definition to ad-
dress the task that will be refined during the development cycle through the Backlog
Grooming.



Agile Knowledge Engineering for Mission Critical Software Requirements 7

The Backlog Grooming is a key activity which lasts over the whole development
process. It focuses the problem definition, refining redundant and obsolete require-
ments. Moreover, it prioritizes requirements according to contingent mission needs.
The acceptance criteria and the scenario definition are set by the PO in the user
stories.

The developing team used by the Agency is composed as follows (such team
composition is an adaptation of standard Scrum roles within a mission critical con-
text).

• The Product Owner is the governmental official in charge of a specific mission
critical function which has to be developed. He provides the general vision of
the final functionalities to the whole team i.e., what the system has to do. It may
be that PO delegates its role to another official of his team. In this case, the PO
becomes a team of people that has to decided about the systems functionalities
and discuss them within the development team. Ideally, the PO team has to be
representative of the final user, thus it should be made also of real users.
This crucial role is pivotal for the positive outcome of the sprint. De facto, the
shortening of the “requirement chain” through the involvement of end users and
the constant feedbacks of the PO during the sprint is a key success factor.
In our case study the stakeholders were initially barely aware about the devel-
opment process. Due to a constant involvement within the iterations, the stake-
holders became aware of the development methodology and aligned their expec-
tations increasing their satisfaction. Through this involvement, there is an align-
ment of both interests and expectations that raises the quality of the final artifact.
So, the final product may not be fancy but down to earth with a high degree of
immediate usability by a final user. Therefore, the degree of user involvement is
of highest importance since it has a direct impact on the development itself and
a ground for building a sense of ownership of the final product which is essential
for the acceptation of the final product.

• The Scrum Master (SM) is a domain expert and is supposed to lead the devel-
opment team and the Product Backlog management. The SM shapes the process
according to mission’s needs, leading continuous improvement like in any Agile
team. He has to shield the development team from any external interferences as
also to remove any hinder which may occur. What typically happens in mission
critical organization is that information is shared only through very structured
processes. So, there could be a loss of productivity, due the waste of time to ob-
tain relevant information for the development process. The SM knows how to
gain such information and is in charge of sharing it when needed, with no waste
of time from the development side.
According to the critical domain, he is accountable for the team’s output. So, he
is a facilitator but he takes the control of the team, considering also the differ-
ent backgrounds of the members. Both PO and SM collaborate closely to refine
requirements and get early feedbacks. Furthermore, his role is to build and sus-
tain effective communications with customer’s key staff involved in the devel-
opment. Finally, he is in charge of the overall progress and take responsibility



8 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

for the methodology used within the development cycles. So, he may do some
corrections within the team to deliver the expected output.

• The Development Team composed by both military and civil contractors is in
charge of the effective development. The team members are collectively respon-
sible for the development of the whole product. Within the team there are no
specialized figures (e.g., architects, developers, testers), and it is the team that
organizes itself internally and takes responsibility over the entire product.
The self organization empowers the team for the execution of the Sprint Backlog,
i.e., the developed Product Backlog within the sprint, based on the prioritization
by the PO. The team members are lead by the SM who is mainly a problem solver
and interfaces with the organization which needed the mission critical product.
The number of team members is between three and five highly skilled software
developers. The absence of a specialization is due the fact that any member is
supposed to have a good knowledge about the system developed with a clear
vision on the final artifact. Finally, they are also involved in the testing phase,
which is carried out by an independent audit commission.

• The Coach is an employee of the civilian main contractor and is in charge of
the management of contractual issues. Since the typical contractual form for de-
veloping contractors is body rental, the Coach facilitates organizational issues
which may occur during the development cycles. Her role is to smoothen prob-
lem which may rise, to get the team oriented to the development of the artifact.

After each sprint a deployable release of the system is delivered. In order to as-
sure security standards of mission critical applications extra testing is pursued. This
activity is carried out before the deployment within the mission critical network. So,
before deployment three steps are carried out as follows:

1. The development team runs a first test in the development environment and then
in a specific testing environment (stage), having the same characteristics of the
deployment environment.

2. Afterwards, testing activities are performed by Agency’s personnel involved in
test bed based activities, in limited environments to validate the actual effective-
ness of the developed systems in training and real operating scenarios (Integrated
Test Bed Environment).

3. Finally, testing activities on the field performed to verify the compliance of the
developed systems to the national and international standards and gather opera-
tional feedback to improve the system’s performance and usability.

Only after the positive check of these three steps the functionality is deployed.
At the end and beginning of a new Sprint, all interested stakeholders discuss about
positive and negative aspects, to improve the next iteration. Therefore, it is an in-
cremental process, which changes with the operational scenario. It is not a frozen
methodology, but it evolves along with Agency’s needs.

Finally, a quite important outcome of this approach is the cost reduction in all the
system’s lifecycle. A first assessment of the product cost per “line of code equiva-
lent” with respect to other comparable internally-produced software showed a cost



Agile Knowledge Engineering for Mission Critical Software Requirements 9

reduction by 50%. To consider those costs we computed a comparable software by
dimension (LOC) and functional area (command and control). We considered all
relative cost of personnel, documentation and maintenance costs and fix cost for
office’s utilities. The assessment after two years showed more significant cost re-
duction.

Generally speaking, we know from past experiences that, on average, cost per
ELOC in similar C2 domains is about 145 dollars; with regard to ground opera-
tion the cost is about 90 dollars [32]. This study, in particular, was carried out for
Waterfall in a procedural context. Based on Reifer’s study, we carried out our eval-
uation regarding iAgile cost. It was quite surprising to realize that the software we
measured had an average cost of 10 dollars per ELOC.

This was possible cutting maintenance and documentation costs, which represent
the most relevant part of software development costs [31]. The cost reduction came
mainly from the minor rework due to requirement misunderstanding (project risk
reduction) connected to the short delivery cycle and to the integration of subject
matter experts into the agile teams (asymmetric pair programming typical of iAgile).
Moreover, the reduction of non-developing personnel played also an important role.

Since project management responsibilities were in charge of the Agency, the
use of internal personnel reduced the cost of hiring industry’s senior figures. Also
the increase of teams’ effectiveness from sprint to sprint led to cost cuts. Due to
the incremental domain knowledge acquisition gained through domain experts and
user’s feedbacks developers were able to produce artifacts which were attained to
customer’s expectation, decreasing sensibly rework.

3 Requirements engineering, management & tracking

Agile software methodologies like Scrum put the development team at the center
of the development process removing the major part of the procedural steps of the
legacy methods and the connected “milestone evidence” mainly consisting of docu-
ments and CASE artifacts [5]. Agility is supposed to increase the production effec-
tiveness and, at the same time, to improve the quality of the product.

However, in order to go Agile, a Waterfall-like static requirement documentation
can not be replaced simply with a product backlog. The old-fashioned Waterfall
frozen requirement document is no longer effective to capture the user needs in
quickly changing mission critical environments. Replacing structured and consoli-
dated text with volatile lists of simple sentences may result, in the case of complex
systems, in a sensible loss of knowledge. Traceability of how the solutions are found
and both the user and the developer growth may become “implicit and unexpressed
knowledge” which are key elements within a high quality software development
process.

Several studies suggest to overcome requirements misunderstanding as soon
as possible, in order to improve the project results and to decrease development
and maintenance costs within its life cycle [6]. This is one of the reason why the



10 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

Agency started to develop some mission critical software in an Agile way, in order
to “shorten the requirement chain”, fostering software quality and cost reduction.

The ambiguity concerning the functions to implement is an everyday challenge.
Due to the volatility of the user needs, changing of scenarios, and the intrinsic com-
plexity of software products, a dynamic requirement engineering worked very well
in an Agile environment [15]. However, the most challenging task is to identify the
“tacit dimension” of the user requirements and to surface the “implicit” knowledge
of users [27].

In most agile approaches requirements are given in the form of “User Stories”,
which are short sentences in natural language usually describing some value to be
computed in some scenario in favor of some typical class of users. Such formal-
ization drives non-linear human thinking in a standardized form where users have
to explain how they imagine the system. This approach has been implemented for
mission critical applications. Capturing users requirements and overcome the intrin-
sic ambiguity of the natural language are two of the main goals of this effort. Fully
refined requirement specification documents are no longer meaningful; instead they
should incorporate some guidelines to help the developers to effectively measure the
quality of the features so that these can be improved. The result is a novel proposal
based on an evolution of the “Scrum type” Product Backlog, here represented:

• User Story. A structured sentence which summarizes the functionality. Example:
As <role>
I want to <functionality description>
in order to <goal to pursue>.

• Business Value. Describes the business value of the desired functionality.
• User Story Elaboration. It is an extended user story and it details how the func-

tionality has to be implemented.
• Acceptance Criteria. Non functional requirements are given, necessary to accept

the functionality (e.g., security, compliance to standards, interoperability issues).
Moreover, also functional requirements have to be verified, to accept the devel-
oped software. Tests are typically focused on these functionalities.

• Definition of Done. It is when the story can be considered fully implemented.
The Definition of Done includes the Acceptance Critera and anything that the
PO believes is necessary that the team does on the code before it can be released.

• Expected Output. It is a list of expected outputs from the functionality, once
implemented.

Software development methodologies should be inspired by their organization’s
needs and not by programming concepts. Well aware of Conway’s principle [11]
it is the mission need that shapes the information system. Not the structure of the
organization, which in our case is highly hierarchic and in its communication flows
reflects the Waterfall paradigm. Due to the constant iteration between the users’
community, through the Product Owner, and the development team, required ap-
plications attains users’ expectations. Our experience has shown the effectiveness
to overcome the limitations of existing alternatives of a Waterfall like requirement



Agile Knowledge Engineering for Mission Critical Software Requirements 11

engineering, which is ineffective for complex user requirements, especially in the
mission critical domain.

If continuous interaction, typical of Agile, is crucial to overcome structural in-
formation asymmetry, which is present in any human interaction [1], experience
showed that it is not enough. Any software project, especially Agile, involves dif-
ferent people, with different backgrounds and experiences. In other terms, we all
have our “mental models” [20], which are the source of this information asymme-
try. Mental models are psychological representations of real, hypothetical, or imag-
inary situations, identified by Kenneth Craik [13]. They are mental constructs of the
world around us. A mental model is a representation of the world around us and
shapes our behavior and approach to problem solving. Like a pattern, once we ex-
perimented that the solution works, we tend to replicate it. It helps us to not restart
from zero any time we have to face a problem. Thus, it is a simplification. So, it is a
mind construct of “small-scale models” of the reality, to anticipate events, to reason,
and to underlie explanation [13].

To give an example of the difference between the semantic meaning of a nominal
identical concept (i.e., difference in mental models) let us consider the notion of
“battle-space geometry”. Starting from a user story, a PO may write: “as a comman-
der I want to be able to represent the forward line of my sector on a map to see the
deployed materials”.

The user has in mind a “line” whose geometrical elements (waypoints, start,
finish and type) are decided by a superior command post that is given to him as part
of a formatted order packet which he expects to appear on the map by a single click
of his mouse and to be updated as the tactical situation changes. The developer’s
first comprehension will be “drawing” tools able to produce a line by simply calling
some graphic libraries. The focus is on how to implement it writing the least possible
quantity of new code. This is just an example but it qualifies the differences between
the two worlds very well.

For the user the image on the video is just a representation of the real world, for
instance a real portion of land where the operation is taking place. Instead, for the
developer the same object is the result of a series of interactions showing a map on
a video where he has to provide a design tool. As trivial as they may seem these
differences are at the root of the software requirement specification problem that in
the past has been tackled by freezing the requirement text and operating a certain
number of translations into formal representations without reconciliation of the two
different mental models.

Some concepts developed in conceptual semantics explain how the representa-
tion of the world expressed in natural language is the result of a mediation between
the speaker’s perception of the world and the current setup of his own mind (i.e.,
mental models). This poses the question on what we really do communicate about
requirements when we use natural language. In [19] this problem is studied, and a
solution based on feature maps is proposed.

In our case what emerged is a common ontology used by both users and devel-
opers. We found out that working on the ontology in the initial production process
(i.e., Product Backlog) improved the effectiveness of the Agile approach. In fact, the



12 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

development of a Command and Control ontology, useful as knowledge representa-
tion tool as described in the next section, is also effective to merge different mental
models and to support requirements traceability [43].

4 Use of KBS and OBS within iAgile

The use of Ontology-Based Systems (OBS) for managing requirements and user
stories when applying Agile methods has been explored many times, but it is still
an unresolved issue [23, 25]. Some literature suggests that ontology driven develop-
ment should be the norm, both in general and specifically in the Agile arena [21].

The use of OBS is of paramount importance in a mission critical context. We have
experienced it in peace-keeping operations, where rapid information flows coming
from different actors (e.g. military, NGOs, citizens, press.) have to be processed.
The different needs, contexts, and objectives of these actors are often reflected into a
wide range of viewpoints and assumptions, producing different, overlapping and/or
mismatched concepts and structures that essentially concern the same subject mat-
ter.

Different “organizational routines” [27] lead to different communication stan-
dards, along with “tacit knowledge” [29]. Thus, there is the need to organize the
different “mental models” [30] around the development process. Ontologies are a
powerful tool to overcome this lack of a shared understanding, providing an unify-
ing framework for the different viewpoints and mental models that coexist in vast
and heterogeneous contexts.

As described in [43], this shared understanding provides many practical benefits,
such as serving as the basis for human communication (reducing conceptual and
terminological confusion), improving the interoperability among systems with dif-
ferent modeling methods, paradigms, languages and software tools, and supporting
the main system engineering principles (such as reusability, reliability, requirements
identification, system specification, etc.). The adoption of ontologies as a core com-
ponents of software architectures [8] in conjunction with Agile methodology devel-
opment principles has proven its effectiveness in changing and variable contexts.

An overall idea of the main elements of the development process is depicted in
Figure 2. Both KBS and OBS are build on users’ mental models. This means that
requirements and the ontology represent user’s view and needs. So, the user stories
collected are the core elements. Following Agile methodologies principles, such
artifacts are fundamentals to distill both information about the system to develop,
and knowledge on the domain in which such system is expected to operate. User
stories have been used to extract the requirements of the C2 system, and to develop
an ontology for representing the main concepts of the mission critical domain.

So, the backlog grooming (i.e., the refinement of the user stories) becomes the
instant where users stories split. Requirements are defined and the ontology is devel-
oped. This split is not straightforward. Considering that ontology’s entities definition
is very helpful to define better user’s expectations, requirements documents are de-



Agile Knowledge Engineering for Mission Critical Software Requirements 13

Fig. 2 The ontology of the application domain and the system requirements are derived from user
stories

veloped separately from the ontology. While requirements are developed manually
by the development team, the ontology is developed by Protégé2 [22]. As shown
in Figure 3, developers already exposed to semantic technologies use this standard
tool to develop the domain specific ontology.

4.1 An Ontology-based Architecture for C2 Systems

One of the main challenges in the mission critical domain is the ability of man-
aging in a precise and accurate way the complexity, variability and heterogeneity
of information. In particular, the ability of integrating different sources of informa-
tion, extracting the most relevant elements and putting them into the context is of
paramount importance for supporting the tasks of control and decision making. In
our approach, ontologies and related technologies are the main tools for facing both
the methodological and technological aspects of such context.

2 http://protege.stanford.edu



14 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

Fig. 3 A snapshot of the C2 ontology during its development with Protege. The class and property
hierarchies are shown on the left, while other contextual information (e.g. annotations, instances
and relevant properties) are shown on the right.

Similarly to other scenarios, also in the the mission critical domain people, or-
ganizations, and information systems must communicate effectively. However, the
various needs, contexts and objectives are often reflected into a wide range of view-
points and assumptions, producing different, overlapping and/or mismatched con-
cepts and structures that essentially concerns the same subject matter. Ontologies
are often used to overcome this lack of a shared understanding, providing an uni-
fying framework for the different viewpoints that coexist in vast and complex C2
systems.

As described in [43], this shared understanding provides many practical benefits,
such as serving as the basis for human communication (reducing conceptual and
terminological confusion), improving the interoperability among systems with dif-
ferent modeling methods, paradigms, languages and software tools, and supporting
the main system engineering principles (such as reusability, reliability, requirements
identification, system specification).

The central role played by ontologies is summarized by Fig.4, which depicts the
overall architecture of the C2 system. The ontology we have developed describes the
data model contained in a Knowledge Base (KB), which contains all the informa-
tion needed by the C2 system. The KB is populated by ad hoc software components
(i.e. adapters), that extract information from all the different sources (e.g. legacy



Agile Knowledge Engineering for Mission Critical Software Requirements 15

tactile systems, news or ONG CMS, etc.), and convert it in semantic statements
that conforms to the ontology. The frequency of the KB populating processes varies
from sources to sources. Where possible, triggering mechanisms have been used
to identify modifications in the sources and activating the data extraction. Other-
wise, adapters performs the data extraction at fixed (and configurable) intervals. Of
course, high data quality is a major issue here [7].

The KB contains provenance information defining:

• the origin of the data;
• the agent (usually a software component) responsible for the data extraction;
• other useful metadata (e.g. time information, type - such as insertion, deletion,

update - of the KB modification, etc.).

The main advantages of having such information are the ability to discern among
different authority levels, the capability of performing comparisons and advanced
filters, just to cite a few. Moreover, from a technical point of view, provenance in-
formation are of paramount importance to have full control over the KB state during
the whole system lifecycle (from the inception and development phases to the final
operating period).

The Main C2 system is depicted at the upper vertex of the star architecture. It im-
plements all the functionalities required by the users and described in the collected
user stories. All the data required to expose such functionalities to the users are re-
trieved from the KB by means of standard semantic queries. The same mechanism
is used for adding new information in the KB (e.g. for keeping track of the output
of the system users’ analysis and decision processes).

4.2 Developing domain ontologies from user stories with iAgile

Ontologies play a crucial role in the development of the framework. The primary
objective is to develop an ontology that is capable of modeling the complexity of
mission critical domains. The starting point and primary source of information for
this task is the set of 600 user stories collected from the system final users and
domain experts. User stories have been grouped in small buckets (having between
5 and 10 user stories each). The process started by considering a first bucket, that
has been used to develop an initial model. Finally, the ontology has been developed
iteratively, by adding a new user story bucket to the set of already considered ones
at each cycle.

At the end of each cycle, a small dataset (test dataset) is created according to
the current ontology and considering the user stories under examination. Such a
dataset is used to perform a quality check on the current ontology. In practice, tests
are a series of queries that are derived by analyzing the functionalities described
in the user stories. A query test must be executed on the test dataset to check the
ontology validity after the modifications performed in the last cycle. In case of a
positive result, a new user story bucket is considered and another development cycle



16 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

Fig. 4 The C2 system is modeled around the star architecture pattern. The domain ontology is the
center of such architecture, and is used to integrate different resources and systems.

is performed. Otherwise, the ontology is refactored and modified until the quality
check is satisfied.

In order to clarify the ontology development process, we present in Figure 5 a
bucket composed by eight real user stories collected for the C2 system.

Each user story is identified by a unique identifier. User stories have a common
fixed structure, where users’ roles, objectives and user story specifications are eas-
ily identifiable. During a further step of analysis, the concepts that are the main
candidates for becoming classes in the domain ontology have been underlined.

An excerpt of the ontology developed starting from the eight user stories is de-
picted in Figure 6. Three general concepts are modeled: logistic item, location and
convoy. Well known ontology engineering principles and best practices described in
[16] have been used throughout the whole process. As shown in the ontology frag-
ment, for example, the trajectory pattern [18] has been used to model objects posi-
tions and movements. This is an elegant solution for attaching trajectories composed
of segment with a geographical or physical extents to any object of the domain.

The process of ontologically modeling the domain has many practical benefits.
For example, we successfully converted requirements and constraints to the data
model in semantic assertions. Such restrictions can be automatically checked by
using popular semantic tools (e.g. reasoners). For instance, we can imagine to add
an assertions that states the segments of a trajectory should not be in overlap with



Agile Knowledge Engineering for Mission Critical Software Requirements 17

US 2825 (2656)
As <system user>I want <to figure out if the track relative to an object (equipment) rep-
resented on the map has been updated, or if the position has just been changed.><Such a
status would be highlighted by a green border around the icon on the object. This function
should be enabled or disabled by the user.>

US 2828(2659)
As <commander of the logistics>I want <to view a summary, in both tabular and graphical
format (eg. histogram), of the efficiency logistic items. ><The total of logistics items and
the level of efficiency should be displayed in percentage of the total.>

US 2829(2660)
As <commander of the logistics>I want <to be able to view on a geographical map the ge-
ographical distribution of identified logistical items (e.g. equipment, materials, etc.).><The
map shall display the concentrations of materials at the logistic centers, represented by a
specific colored icon associated with the type of material. The color should reflect the over-
all efficiency of the logistic item. For each logistic center, it should be possible to view the
amount items, with an histogram graph showing both total items along with the percentage
of efficiency.

US 2822(2653)
As <system user>I want <that the system can receive and display information about convoy
(e.g. trucks, helicopters, planes, etc.) - for example Moving Convoy, Halted Convoy, etc.>

US 2821(2652)
As <system user>I want <that the system can store information about convoy (e.g. Moving
Convoy, Halted Convoy, etc ...).>

US 2820(2651)
As <FAS web user>I want <to be able to view on a geographical map the geographi-
cal distribution of identified logistical items.><The map shall display the concentrations
of materials at the logistic centers, represented by a specific colored icon associated with
the type of material. The color should reflect the overall efficiency of the logistic item. For
each logistic center, it should be possible to view the amount items, with an histogram graph
showing both total items along with the percentage of efficiency.>

US 2819(2645)
As <FAS web user>I want <to be able to view on a geographical map the geographi-
cal distribution of identified logistical items.><The map shall display the concentrations
of materials at the logistic centers, represented by a specific colored icon associated with
the type of material. The color should reflect the overall efficiency of the logistic item. For
each logistic center, it should be possible to view the amount items, with an histogram graph
showing both total items along with the percentage of efficiency.>

US 2711(2296)
As <system user>I want <to display on the map the trajectory and the last positions of a
specific object. This functionality should be enabled or disabled by the user.>

Fig. 5 User stories collected with iAgile are used to develop the system domain ontology



18 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

Fig. 6 A fragment of the developed domain ontology. Three general concepts are represented (i.e.
logistic item, location and convoy), and the trajectory pattern has been used to model positional
information

respect of both the time and space dimensions. In another words, we can impose
that an object should not have two different positions at the same time. All the
cases that do not respect such limitations in the data are automatically identified as
inconsistencies stated by the semantic reasoners.

5 Conclusions

Knowledge Based Systems and Ontology Based Systems are key elements for the
development of software-intensive mission critical systems. We reported about a
real case study concerning a mission critical system developed for an Italian gov-
ernmental Agency. Volatile requirements and fast changing operational scenarios
led to the choice of a new development process model, transitioning from Waterfall
to Agile. However, Agile is not a panacea per se but needs to be adapted for complex
mission critical purposes. We customized Scrum into iAgile, developing a flexible
but structured paradigm. Ad hoc steps were designed to comply with both velocity
and security. Moreover, we found that such methodology led to an important saving
of development and maintenance costs.

The role of the KBS we have used is double: to disambiguate requirements and to
build an ontology for interoperability and knowledge representation. The ontology
was designed using semantic tools during the requirement specification. Moreover,
at the same time, the user story elaboration is carried out for the functionality de-
velopment. This process allowed to align the different mental models of users and
developers. Therefore, after the first formalization of entities, it supported the next
Sprint backlogs with a high relevance to users’ expectations.

The big advantage of the use of an ontology derives from the interoperability
with other legacy systems. In a real-world operational scenario, the mission critical
information system is fed by information of different provenance. As shown, also
non-governmental actors may deliver useful elements for an up to date situational
awareness. So, from different sources it is possible gather data in a flexible and
incremental way improving the information completeness, necessary to take mission



Agile Knowledge Engineering for Mission Critical Software Requirements 19

critical decisions. Moreover, through the relationship between ontologies of other
governmental or intergovernmental agencies both interoperability or replacement of
such system is highly simplified. Since the Agency is supposed to offer security
services in multilateral and multinational operations, interoperability is of strategic
importance. Therefore, the presented approach is an important driver for a smooth
and effective system deployment in a mission critical environment.

Future research will go in several directions.
A comprehensive approach to OBS, based on the acquired experience, will be

implemented within the Agency with the aid of knowledge-based tools. Moreover,
a Machine Learning approach in which requirements are automatically processed to
assist the continuous development with Scrum [38] has also to be developed. Also,
the use of concurrent development methodologies to support velocity and reliability
has to be improved [34], along with a flexible system’s architecture. Especially, the
reliability in terms of systems “antifragility” of mission critical applications needs
further investigation [35], [36]. Although we are aware of the relationship between
the software quality dimension and its architecture [37], still efforts need to be pur-
sue to figure out how Agency’s business goals (e.g., velocity, cost reduction) impact
on the system. Finally, also issues related to software reuse have to be explored
[10, 9], since the cloning practices, also in critical systems, is quite common.

Acknowledgements The Authors wish to thank the Consorzio Interuniversitario Nazionale per
l’Informatica (CINI) for the partial support in the context of the AMINSEP project. We also thank
CNR for supporting the authors Ciancarini and Russo.

References

1. G. Akerlof. The market for lemons: Quality uncertainty and the market mechanism. In Es-
sential Readings in Economics, pages 175–188. Springer, 1995.

2. D. S. Alberts, J. J. Garstka, and F. P. Stein. Network Centric Warfare: Developing and Lever-
aging Information Superiority. Technical report, DTIC Document, 2000.

3. A. Alliance. Agile manifesto. Online at http://www. agilemanifesto. org, 6(1), 2001.
4. J. B. Bearden. Command and control enabling the expeditionary aerospace force. Technical

report, DTIC Document, 2000.
5. L. Benedicenti, F. Cotugno, P. Ciancarini, A. Messina, W. Pedrycz, A. Sillitti, and G. Succi.

Applying scrum to the army: a case study. In Proceedings of the 38th International Conference
on Software Engineering Companion, pages 725–727. ACM, 2016.

6. B. Boehm and V. R. Basili. Software Defect Reduction Top 10 List. Computer, 34(1):135–
137, 2001.

7. P. Ciancarini, F. Poggi, and D. Russo. Big Data Quality: a Roadmap for Open Data. In 2nd
IEEE International Conference on Big Data Service (BigDataService), pages 210–215. IEEE,
2016.

8. P. Ciancarini and V. Presutti. Towards ontology driven software design. In Radical Innovations
of Software and Systems Engineering in the Future, pages 122–136. Springer, 2004.

9. P. Ciancarini, D. Russo, A. Sillitti, and G. Succi. A guided tour of the legal implications of
software cloning. In Proceedings of the 38th International Conference on Software Engineer-
ing Companion, ICSE ’16, pages 563–572. ACM, 2016.



20 Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo

10. P. Ciancarini, D. Russo, A. Sillitti, and G. Succi. Reverse engineering: a european ipr per-
spective. In Proceedings of the 31st Annual ACM Symposium on Applied Computing, pages
1498–1503. ACM, 2016.

11. M. Conway. How do committees invent. Datamation, 14(4):28–31, 1968.
12. F. R. Cotugno and A. Messina. Adapting Scrum to the Italian Army: Methods and (Open)

Tools. In IFIP International Conference on Open Source Systems, pages 61–69. Springer,
2014.

13. K. Craik. The nature of exploration, 1943.
14. S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton. Experiences

using lightweight formal methods for requirements modeling. IEEE Transactions on Software
Engineering, 24(1):4–14, 1998.

15. S. Gazzerro, R. Marsura, A. Messina, and S. Rizzo. Capturing User Needs for Agile Software
Development. In Proceedings of 4th International Conference in Software Engineering for
Defence Applications, pages 307–319. Springer, 2016.

16. A. Gomez-Perez, M. Fernández-López, and O. Corcho. Ontological Engineering: with exam-
ples from the areas of Knowledge Management, e-Commerce and the Semantic Web. Springer
Science & Business Media, 2006.

17. D. Harvie and A. Agah. Targeted scrum: Applying mission command to agile software devel-
opment. IEEE Transactions on Software Engineering, 42(5):476–489, 2016.

18. Y. Hu, K. Janowicz, D. Carral, S. Scheider, W. Kuhn, G. Berg-Cross, P. Hitzler, M. Dean, and
D. Kolas. A geo-ontology design pattern for semantic trajectories. In International Conference
on Spatial Information Theory, pages 438–456. Springer, 2013.

19. N. Itzik, I. Reinhartz-Berger, and Y. Wand. Variability analysis of requirements: Considering
behavioral differences and reflecting stakeholders. IEEE Transactions on Software Engineer-
ing, 42(7):687–706, 2016.

20. P. N. Johnson-Laird. Mental models: Towards a cognitive science of language, inference, and
consciousness. Number 6. Harvard University Press, 1983.

21. H. Knublauch. Ramblings on Agile methodologies and ontology-driven software develop-
ment. In Workshop on Semantic Web Enabled Software Engineering (SWESE), Galway, Ire-
land, 2005.

22. H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protégé OWL plugin: An
open development environment for semantic web applications. In International Semantic Web
Conference, pages 229–243. Springer, 2004.

23. M. Kumar, N. Ajmeri, and S. Ghaisas. Towards Knowledge Assisted Agile Requirements Evo-
lution. In Proc.e 2Nd Int. Workshop on Recommendation Systems for Software Engineering,
RSSE ’10, pages 16–20, New York, NY, USA, 2010. ACM.

24. G. Lucassen, F. Dalpiaz, J. van der Werf, and S. Brinkkemper. Improving agile requirements:
the quality user story framework and tool. Requirements Engineering, 21(3):383–403, 2016.

25. J. Machado, S. Isotani, A. Barbosa, J. Bandeira, W. Alcantara, I. Bittencourt, and E. Barbosa.
Ontosoft process: Towards an agile process for ontology-based software. In 49th Hawaii
International Conference on System Sciences (HICSS), pages 5813–5822. IEEE, 2016.

26. A. Messina, F. Fiore, M. Ruggiero, P. Ciancarini, and D. Russo. A new agile paradigm
for mission-critical software development. The Journal of Defense Software Engineering
(CrossTalk), (6):25–30, 2016.

27. R. R. Nelson and S. G. Winter. An evolutionary theory of economic change. Harvard Univer-
sity Press, 2009.

28. C. of the Joint Chiefs of Staff. Interoperability and supportability of information technology
and national security systems. Technical Report CJCSI 6212.01E, Department of Defence
(United States of America), dec 2008.

29. M. Polanyi. The tacit dimension, 1966.
30. J. F. Porac and H. Thomas. Taxonomic mental models in competitor definition. The Academy

of Management Review, 15(2):224–240, 1990.
31. R. S. Pressman. Software engineering: a practitioner’s approach. Palgrave Macmillan, 2005.
32. D. Reifer. Industry software cost, quality and productivity benchmarks. The DoD Soft-

wareTech News, 7(2):3–19, 2004.



Agile Knowledge Engineering for Mission Critical Software Requirements 21

33. K. S. Rubin. Essential Scrum: a practical guide to the most popular agile process. Addison-
Wesley, 2012.

34. D. Russo. Benefits of open source software in defense environments. In Proceedings of
4th International Conference in Software Engineering for Defence Applications, volume 422,
pages 123–131. Springer, Advances in Intelligent Systems and Computing, 2016.

35. D. Russo and P. Ciancarini. A Proposal for an Antifragile Software Manifesto. Procedia
Computer Science, 83:982–987, 2016. The 7th International Conference on Ambient Systems,
Networks and Technologies (ANT 2016).

36. D. Russo and P. Ciancarini. Towards Antifragile Architectures. Procedia Computer Science,
109:929–934, 2017. The 8th International Conference on Ambient Systems, Networks and
Technologies (ANT 2017).

37. D. Russo, P. Ciancarini, T. Falasconi, and M. Tomasi. Software quality concerns in the italian
bank sector: the emergence of a meta-quality dimension. In Proc. 39th Int. Conf. on Software
Engineering, ICSE ’17, pages 63–72. IEEE, 2017.

38. D. Russo, V. Lomonaco, and P. Ciancarini. A machine learning approach for continuous
development. In Proceedings of 5th International Conference in Software Engineering for
Defence Applications. Springer, Advances in Intelligent Systems and Computing, 2017.

39. K. Schwaber. Agile Project Management with Scrum. Microsoft Press, 2004.
40. L. Sterling, P. Ciancarini, and T. Turnidge. On the animation of not executable specifica-

tions by prolog. International Journal of Software Engineering and Knowledge Engineering,
6(1):63–87, 1996.

41. J. Sutherland. Agile can scale: Inventing and reinventing Scrum in five companies. Cutter IT
Journal, 14(12):5–11, 2001.

42. C. Thamrongchote and W. Vatanawood. Business process ontology for defining user story.
In IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS),
pages 1–4, Japan, 2016.

43. M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications. The Knowl-
edge Engineering Review, 11(02):93–136, 1996.

44. VersionOne. 11th annual state of agile survey, 2016.


	Agile Knowledge Engineering for Mission Critical Software Requirements
	Paolo Ciancarini, Angelo Messina, Francesco Poggi and Daniel Russo
	Introduction
	Complex software systems specification
	Evolution of a Mission Critical Information System through Agile

	Requirements engineering, management & tracking
	Use of KBS and OBS within iAgile
	An Ontology-based Architecture for C2 Systems
	Developing domain ontologies from user stories with iAgile

	Conclusions
	References



