Contracting Agile Developments
for Mission Critical Systems in the Public Sector

Daniel Russo
University of Bologna, Dept. of
Computer Science & Engineering
Bologna, Italy
daniel.russo@unibo.it

Angelo Messina
Innopolis University
Innopolis, Respublika Tatarstan,
Russia
a.messina@innopolis.ru

ABSTRACT

Although Agile is a well established software development para-
digm, major concerns arise when it comes to contracting issues
between a software consumer and a software producer. How to
contractualize the Agile production of software, especially for se-
curity & mission critical organizations, which typically outsource
software projects, has been a major concern since the beginning of
the “Agile Era” In literature, little has been done, from a founda-
tional point of view regarding the formalization of such contracts.
Indeed, when the development is outsourced, the management of
the contractual life is non-trivial. This happens because the inter-
ests of the two parties are typically not aligned. In these situations,
software houses strive for the minimization of the effort, while the
customer commonly expects high quality artifacts. This structural
asymmetry can hardly be overcome with traditional “Waterfall”
contracts. In this work, we propose a foundational approach to the
Law & Economics of Agile contracts. Moreover, we explore the key
elements of the Italian procurement law and outline a suitable solu-
tion to merge some basic legal constraints with Agile requirements.
Finally, a case study is presented, describing how Agile contracting
has been concretely implemented in the Italian Defense Acquisi-
tion Process. This work is intended to be a framework for Agile
contracts for the Italian public sector of critical systems, according
to the new contractual law (Codice degli Appalti).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.

ACM ISBN 978-1-4503-5661-9/18/05. .. $15.00
https://doi.org/10.1145/3183428.3183435

Gerolamo Taccogna
University of Genoa, Dept. of Law
Genova, Italy
g.taccogna@unige.it

Paolo Ciancarini
University of Bologna, Dept. of
Computer Science & Engineering
Bologna, Italy
paolo.ciancarini@unibo.it

Giancarlo Succi
Innopolis University
Innopolis, Respublika Tatarstan,
Russia
g.succi@innopolis.ru

CCS CONCEPTS

« Applied computing — IT governance; Law; Economics; «
Software and its engineering — Software creation and man-
agement; Software organization and properties; « Social and pro-
fessional topics — Professional topics; Computing / technology

policy;

KEYWORDS

Software Engineering, Agile, Agile Contracts, Contracting, Law &
Economics, Public Sector

ACM Reference format:

Daniel Russo, Gerolamo Taccogna, Paolo Ciancarini, Angelo Messina, and Gi-
ancarlo Succi. 2018. Contracting Agile Developments for Mission Critical
Systems in the Public Sector. In Proceedings of 40th International Conference
on Software Engineering: Software Track, Gothenburg, Sweden, May 27-June
32018 (ICSE-SEIS’18), 10 pages.

https://doi.org/10.1145/3183428.3183435

1 INTRODUCTION

In several commercial domains Agile development has been effec-
tive for building new software systems or to evolve an existing one
rapidly, decreasing development costs. The role of IT, intended as
value-focused support for the design and implementation of digital
technologies, disrupted new product and service developments [31-
33]. While consumers are becoming more keen to use technology
for their daily applications, businesses are rethinking about cus-
tomers value and the relative business models for their competitive
differentiation [7]. Therefore, entire industries restructured their
business processes to deliver new capabilities and goals to the new
business model [27]. As software becomes more essential to the
world’s day-to-day activities, the community is calling to move
Agile software development beyond a “craft-based approach to
become a true engineering discipline” [16].

In this scenario, a business area of particular relevance for the
size and the number of opportunities are mission & security critical
systems, especially for defense applications [11]. These applica-
tions are usually very expensive and are managed with specific
care from public administrations which bid contracts to external
software houses. Apparently, a Waterfall software development

https://doi.org/10.1145/3183428.3183435
https://doi.org/10.1145/3183428.3183435

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

process model responds to some fundamental needs in such organi-
zations, like (i) a clear definition of the costs, (ii) early requirement
definition, (iii) predefined schedule, and (iv) tracing liability if some-
thing goes wrong.

However, when costs rise exponentially during maintenance due
to poor software quality of the deliverables or the loose requirement
implementation, Waterfall shows all its limits. Moreover, velocity
is a crucial factor for such organizations. Military operations need
do be deployed within a very short time range on very different
scenarios [12, 23]. Information systems have to evolve accordingly.
Waterfall, is not a suitable paradigm, since it is not enough flexible,
expensive, and it fails frequently [39].

Although there are industry-scale Agile development techniques
for the development of critical systems, like SAFe [13, 21], contrac-
tual aspects are typically overlooked. With regard to contractual
issues, the adVANTAGE framework is a potential model for com-
mercial organizations [9]. When a project is executed following a
contract compliant with the adVANTAGE framework, a priority list
of requirements in the form of user stories - namely a backlog - is
managed jointly with the customer. Such a backlog is addressed in a
sequence of Sprints. Each Sprint is a project phase of fixed duration,
usually from two to four weeks, and realizes the software satisfying
some of the top requirements found in the backlog. The develop-
ment services are billed according to the quality of the software
delivered at the end of each Sprint. If the contractor fails to realize
the user stories agreed for a certain Sprint within the available
jointly agreed target budget, the additional costs will be charged at
reduced daily rates. This approach or one similar is often followed
in contracts between private companies.

However, the lack of concrete proposals, their experimentations,
and discussions in technical and scientific forums of Agile contrac-
tual models suitable also for the public sector is one of the reasons
why top managers are not keen to this development method. Ac-
cordingly, this work is an attempt to overcome such limitation.

We propose a foundational approach connecting the theory of
how contracts should be organized with Agile practices, using the
Italian context as a reference, and also identifying the key issues of
Agile contracting which need further development.

The paper has the following structure. Related work are pre-
sented in Section 2. In Section 3 Law & Economics of contract
theory are briefly explained to understand the underling logic of
software contracts. This interdisciplinary approach is crucial to
understand the economics of contracts, i.e., alignment of interests,
which is the most tricky part of Agile contracting. In Section 4
we deepen the Italian case, defining the key elements of the pro-
curement law. After gaining a short understanding about the basic
legal boundaries for Agile public contracting, we illustrate two ap-
proaches (Section 5); the first one (5.1) is based on Function Point
Analysis; the second (5.2) is based on Scrum Sprints. A case study
detailing how Agile contracting has been concretely implemented
in the Italian Defence Acquisition Process is described in Section
6. Finally, in Section 7 we sum up our main proposal and envision
some further work.

D. Russo et al.

2 RELATED WORK

The problem of Agile contracting is old. Basically, the main dif-
ference with respect to contracts for Waterfall developments, that
are based on measuring and compensating effort spent during the
process, is that fixed price seems more adequate for agile develop-
ments. The Agile fixed price is a contractual model which includes
an initial phase after which budget, delivery dates, and the way of
defining the scope of the system being built is agreed upon.

For instance in 2006 Alistair Cockburn published online an in-
triguing discussion of some typical Agile contracts!. His page lists
several possibilities, like the following ones:

e fixed price, fixed scope, fixed time;

o fixed price, fixed time, negotiable scope;

e paying for effort as it gets spent. If the requirements are
volatile and there is mutual trust among producer and con-
sumer this is the best situation;

e max price with payment on incremental acceptance: it works
with stable requirements;

e incremental delivery with payment on incremental accep-
tance

e price for each unit delivered, for instance a fixed fee for
function point;

e base fee for each unit delivered, plus a low fee per hour, in
order to incentive developers to early delivery.

Similar contractual cases are also discussed in the work of Pilios
[30]. Further aspects of an Agile contracts are risk share (customers
and developers compensate the additional expenses for unexpected
changes equally amongst themselves) or the option of either party
leaving the contract at any stage (exit points).

Indeed, Agile methods tackle those issues, trying to align the
interests of the development team and the customer. Our interest
here is for Agile applied to mission critical systems sponsored
by public institutions, with specific application to Italian public
institutions.

In some earlier works we have reviewed the enactment of Agile
software development methods within mission & security critical
organizations, especially military ones [12, 23, 36, 37]. Moreover,
in the last years the debate around the use of Agile contracting also
for commercial uses became a trending topic [5, 8, 9, 28]. In [5] the
authors criticize traditional contracts for software development,
which increase the risk of failure because requirements are frozen
due to the sequential work flow, leading to a low quality of design,
and causing a poor return on investment. The book [28] suggests
fixed price or maximum price contracts for Agile developments,
in contracts structured as follows. The contract has to describe
to what extent, in percentage, the costs incurred by the supplier
will be charged to the customer when the maximum price range
is exceeded. A period of n Sprints is agreed upon as the test phase
of cooperation. The final milestone is a checkpoint whereby the
customer and supplier can enter into the real development of the
project or maybe exit in a controlled manner. Another, more re-
cent book [9] expanded a contractual model called adVANTAGE
for Agile Developments, already sketched in [8]. This model puts
specific focus on the willingness of the contractor to take some of

Uhttp://alistair.cockburn.us/Agile+contracts, retrieved on September 19, 2017

http://alistair.cockburn.us/Agile+contracts

Contracting Agile Developments
for Mission Critical Systems in the Public Sector

the (apparent) risks of development that come with Agile practices.
Still, it is not suited for public administrations, since it does not
consider constitutional specificities, outlined in Section 4.

Recently the US government has devoted a lot of attention to
the problem of Agile contracts. The Software Engineering Institute
(SEI) has released in the last five years several reports concerning
Agile for producing software products in particular for the military
[17, 19, 25, 26, 29, 42]. It has also published some guidelines for Agile
contracts for software acquired by the US DoD [18, 41]. These guide-
lines compare traditional developments with Agile developments
for critical military systems. The major recommendation consists
of post-award documenting contractor’s performance throughout
each Sprint and release e.g., using metrics like SQALE [22] for mea-
suring technical debt in terms of effort, or bug defect rates, length
of throughput time compared to contractor estimates, speed of time
to value.

Nevertheless, despite these efforts, the problem of understand-
ing how to lay down contracts for Agile development for mission
critical products is still at its infancy.

3 THE LAW & ECONOMICS OF AGILE
CONTRACTS

Contracts are agreements between two parties, with different inter-
ests, written down to fix such interests, alongside with some results
compensation. Generally speaking, for a free-market economy, the
ability of two parties to enter into voluntary agreements, namely
contracts, is the key element for the market equilibrium [15]. Con-
tract law and law enforcement procedures are fundamental for the
efficiency of any economic system. Thus, contract law has to be
intended as a set of rules for exchanging individual claims to enti-
tlements (i.e., interests). In this way, it enforces the extent to which
society gains from this agreement due to an efficient economic
system.

When one party is unsure about the other party’s behavior,
contracts may mitigate this asymmetry. In our case, contracts are
helpful when advance commitment enhances the value of an artifact
by enabling reliance by the beneficiary [34].

From a Law & Economics viewpoint, there are several issues
regarding the importance of contracting [15].

e Coordination. The most common reason to engage in a con-
tract is to coordinate independent actions in a situation of
multiple equilibria. The most straightforward example is the
well known Prisoner’s dilemma. Without coordination, two
parties with different and independent interests will choose
the scenario where both are worse off (i.e., both confess their
crime and accuse the other party, in order to reduce the
imprisonment time as a benefit). With coordination, on the
contrary, both would get the better payoff, not admitting
the crime, gambling the law system, escaping from a long
imprisonment time. If the parties are well coordinated by
a contract, they will get both the best trade-off, not going
to jail at all. A contract to play this efficient equilibrium
guarantees a positive outcome. This is also known as Nash
equilibrium, where modern contracting theories get most
of their inspiration. The coordination scenarios based on

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

contracts are excellent models to understand institutions
[24].

o Exchange implementation. Especially in situations of hidden
informations (i.e., information asymmetry occurring when
one party has an information which the other party does
not have), contracts may mitigate such asymmetry [2]. To
avoid adverse selection, which impedes market efficiency,
contracts may provide warranties, to assuring the high qual-
ity of the product. This is very typical in software, where the
vendors know the details of the product, while the customer
is totally unaware of the code (usually obfuscated, if it is a
licensed product) but only aware about its functionalities
told by the vendor. Thus, alongside with software, there is
usually a warranty about the product. In this way the cus-
tomer potential downsize (bugs) will be fixed by the vendor
and no special code awareness is needed before buying the
software.

However, there are also some major drawbacks of contracting
[15]. The most important from our point of view are:

e Ex post: specification cost. Writing down all possible con-
tingencies which could arise within the future contractual
relationship is extremely expensive. Potential contingencies
of contractual obligations are usually very broad. Therefore,
contracts are often left open and incomplete. In such cases
there are two main scenarios. It could happen that the con-
tract just fails to provide information for contingencies, since
nothing was agreed upfront. In this case, parties have to de-
cide what happens after a contingency. In the second case
the contract could cover a broad number of contingencies
but not fine-tuning them. In such way, parties still have to
decide what to do, since contingencies are not defined pre-
cisely enough. Anyway, in both scenarios, contracts fail to
assure the commitment of the parties.

o Ex ante: dynamic inconsistency. This is the classic investment
problem. One party may be willing to bargain and to modify
the contracts when it has pursued investments. Suppose that
a vendor has found that the software can easily have more
functionality or higher quality even with limited additional
costs. However, the price has been set, so the motivations
to deliver such higher value are minimal if the customer
is not ready to agree, which is in turn difficult because the
intangible nature of software may make difficult for the
customer to understand the nature of such modifications
(see the next point). In essence, vendors may not have any
incentives to do investments, i.e., spend money to develop
high quality code.

o Unverifiable actions. Even after entering into a contractual
commitment, one party may be unable to determine what-
ever the agreement has been kept or broken. This is the
typical case of intangible goods, like software. It is a not
trivial task to assess with objectivity if what promised has
been carried out according to the contract.

While we analyse Agile contracting, we should avoid the risk of
overstating its problems and overlooking normative and incentive
aspects, typical of any contractual relationship. The economics
of contracting has both upsides (i.e., coordination and exchange

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

implementation) and downsizes (i.e., specification cost, dynamic
inconsistency, and unverifiable actions). What we learn from the
Law & Economics theories of contracts is that any contract has its
loopholes, thus also Waterfall ones.

Waterfall contracts are well known, in a sense they are easy
to agree initially, because parties are usually fully aware of them
and there is a history of people using them - meaning that it is
more difficult for a manager to be subject to criticism for adopting
them?. Both specification costs and unverifiable actions have a big
impact on the cost of contracting. Traditional software contracts
are very expensive; alongside with high specification costs due
to very detailed requirements, there is also the difficulty to assess
with objectivity the artifact to build. Such barriers have a direct
impact on both the contract cost and market efficiency. In Waterfall
contracts there are indeed “hidden” costs that indirectly increase the
cost of software products. The perceived “reliability” of Waterfall
has apparently scarce evidence in practice. What we do know is
that Waterfall usually increases the maintenance costs, which are
hidden costs belonging to the software’s life cycle [35]. However, as
mentioned, while there are established routines concerning how to
carry out a Waterfall contract, there are very few guidelines about
Agile.

First of all we will depict the divergent interests of a software
contract, represented in Table 1. As seen before, contracts facilitate
market equilibrium through coordination and exchange implemen-
tation. In software this means that the two parties which suffer
from an information asymmetry reach an agreement through a
legal binding paper (the contract). A generic organization does
not always have the expertise or the man-power to carry out the
software, while contractors do. There is asymmetry in the sense
that both parties are not aware of the same relevant information,
i.e., the (i) price willing to pay, (ii) technological complexity and
feasibility, (iii) code reuse, (iv) implicit needs of the customer which
may not correspond to requirements. Such problems are overcome
with a binding agreement.

Table 1: Divergent interests

Organiza- Contractor
tion
Requirement Broad Narrow
interpretation
Time to market Assoonas Depending on
possible several issues
Quality & Best Good enough to
Security get paid
Cost As low as As high as
possible possible

However, some latent interests are not aligned by any contract,
due to specification costs, unverifiable actions, and dynamic in-
consistency. If time and cost are fixed, requirements have a degree

2Remember the old adage “None has been fired for using IBM.” which fully expresses
the criticism manages can have by trying new, not yet consolidated, approaches. This
phenomena is also exploited by vendors as it is well explained in the Wikipedia page
on “Fear, uncertainty and doubt” accessed at URL: https://en.wikipedia.org/wiki/Fear,
_uncertainty_and_doubt on Sept. 10, 2017.

D. Russo et al.

of interpretation but they are easily quantifiable; it is quality and
security which belong to an arbitrary or “subjective” dimension
which are the most difficult parts to fix in any software contract.
Loose quality and security software means unsustainable raising
maintenance cost in the long run. Especially mission critical orga-
nizations may loose operational capability due to the complexity
and low quality of their multi-party systems. Therefore, there is a
stringent need in any field to align organizations and contractors
interests, in terms of customer needs, quality & security, costs, and
time.

From a project management perspective, divergent interests can
also be explained with the Iron Triangle [4], represented in Fig-
ure 1. Scope, schedule and budget are typically opposite concepts,
where the optimum is represented by a balanced relation [4]. The
variable that does not change is quality, which is the major concern
of every software project. A software project with a broad scope,
and tight schedule and budget will reasonably be of poor quality.
Similarly, in the case of high budget availability but with a stiff
schedule and broad scope will also deliver poor quality software
due to general low predictability of software project management
for short time frames. Finally, the scenario where a software project
has to be completed within a short time and low budget with a
broad scope is quite unrealistic. Still, the Iron Triangle is extremely
useful to understand the three project management drivers for a
software system with certain quality standards. When parties with
divergent interests engage in a contractual relationship, both need
realistic expectations. An unbalanced relationship, which may be
considered with favor in a first moment, will unlikely deliver a
satisfactory outcome, in terms of software quality. Consequently,
the substantial aim of Agile contracting is both to understand and
to align such divergent interests. However, those interests are rarely
clear ex ante, at the beginning of the contractual relation. There-
fore, the continuous specification of those interests are pivotal for
a successful project outcome. Clearly, this wisdom fits particularly
well to systems which scope evolve in time. So, to tailor the scope
(i.e., requirements specification), along with adequate budget and
schedule, multiple contractual agreements are needed to formal-
ize each Agile iteration. Consequently, we propose in Section 4 a
double—level contracting structure to enhance the ongoing interest
alignment.

Our idea is to develop a bonus-malus reward system. In such a
model, the price is fixed and represents the maximum awardable
amount. According to the development process and product quality
obtained, the contractor is paid according to what is delivered and
measured. To do so, there must be a quantifiable measure of some
kind of software size dimension. With all their limitations, we do
believe that Function Points [3, 38], or some related variants like
Simple Function Points (SiFP) [14], represent a measure that is good
enough for our purposes. To avoid specification costs, contracts
should have a loose - in some way open - requirements list, but a
fixed, predetermined SiFP estimate. Moreover, a bonus-malus mech-
anism should be added alongside within the pricing. After each
iteration i.e., implementation of user stories, SiFP are consumed
and paid. The bonus-malus pricing mechanism in this case means
that with a high quality code, contractors get a bonus, up to the
maximum (fixed) amount. Instead if they deliver a release which
exposes some technical debt contractors get some kind of fine, to

https://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt
https://en.wikipedia.org/wiki/Fear,_uncertainty_and_doubt

Contracting Agile Developments
for Mission Critical Systems in the Public Sector

Scope

Schedule

Figure 1: Iron Triangle [4]

be recovered after the debt is repaid. Clearly, a critical issue is how
to measure the technical debt. Some modern tools like SonarQube
are able to measure technical debt [10]. As any metrics, both FP and
SiFP have some limitations. For this reason we do not claim that
they are the ultimate solution to solve the problem. However, SiFP
is an easy measurable metric for business functionalities, which
are very close to the Agile definition of User Story. Code quality
control is still necessary, to avoid the malicious use of low quality
functions, just to increase pricing. Therefore, it is of greatest impor-
tance to fix such test and metrics within the contract, even if not
implemented. Based on our experience, we suggest that security
and code quality should be defined as non-functional requirements
in the development process. Especially in mission critical organi-
zations we see how some redundancy of competences within the
process improves code quality and security [23]. Thus, a TDD (Test
Driven Development) approach set in the contract seems quite
suitable for Agile contracting. Within each iteration, the Product
Owner (PO) and the contracting development team start with a test
oriented development, which has to correspond to the user story
development.

Our main idea is that continuous “tensions” and new equilibria
between the two parties are the best mitigation drivers that underly
to any contract. Continuous discussions, bargaining, and agreement
do motivate both parties to carry on their respective tasks. In such
way, we think that we can obtain the following results:

e Specification costs are limited, since Agile contracts do not
only specify the very general task at the beginning but they
agree the details of every user story upfront each iteration;
this is a sort of overarching or framework contract.

e Dynamic inconsistency is attenuated through a reward based
payment. Contractors will have the economic interest to get
the “bonus”, which is awarded according to their perfor-
marnces.

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

e Unverifiable actions are mitigated by a TDD approach, since
“quality metrics” i.e., tests, are agreed by the parties within
the iterative development process.

Such approach is particularly effective for public administrations,
which by our law must use a bidding base. Following our proposal
it is possible to define a budget a priori and, at the same time,
contractors will work for better quality software, trying to gain
the whole amount. Organizations and project owners gain from
velocity and requirement satisfaction. From an operational point
of view, this solution tackles each critical point that Waterfall does
not structurally solve.

Finally, from a contractual perspective, i.e., the economics of the
contract, this solution gets all the benefits of contracting, namely
coordination and exchange implementation. At the same time some
major problems of Waterfall contracts (specification cost, dynamic
inconsistency and unverifiable actions) are substantially reduced.

4 THE ITALIAN CASE

Although we are now referring specifically to the Italian case, these
considerations are of use also for other countries based on European
public procurement rules. In fact, regulation may slightly change,
but the constitutional assumptions and procurement characteristic
are basically the same or, at least, comparable. For this reason we
believe that this research is of good use also beyond Italian borders.

The structure of the procurement law follows some basic consti-
tutional principles, comprehending:

(1) free competition,

(2) equal treatment and non-discrimination,

(3) transparency,

(4) adequacy and proportionality.

These are substantial issues, which are always reflected in any
concrete application of the law. In the following subsections we
will try to explain how to structure an Agile contract, according to
those pillars.

4.1 The object of the contract

The contractual object has to be determinate or determinable, ac-
cording to art. 1346 of the Italian civil code (cc in short). So, the
object of the contract needs to be clearly identifiable without fur-
ther arbitrary decisions. This means that a collaboration program
can not be just agreed upfront, if it is not sufficiently determined.
At least, some characteristics of the future software product have
to be defined. Moreover, according to the procurement law (D.Lgs.
nr 50/2016, art. 23.15) the public bid should include a technical
annex, composed by:

(1) calculation of the alleged cost;

2) financial statement of total charges;

3) specific descriptive and performance specifications;

4) minimum bid requirements;

5) awarding criteria;

6) possible variations;

7) the possible circumstances of (non substantial) change of the
negotiating conditions.

(
(
(
(
(
(

The technical annex is of pivotal importance for Agile contract-
ing, since it is the document (or the set of documents) where the

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

public customer describes the required system and prescribes the
methodology. Interestingly, the procurement law applies easily to
Waterfall-like contracts but does not hinder Agile contracting per
se. Consequently, the object of Agile contracts (i.e., the software sys-
tem to developed, evolve or maintain) needs to be defined ex ante at
least in functional terms, with the possibility to refine requirements
along the way. Thus, a corresponding well fitting structure of the
contractual relationship is now proposed.

4.2 The structure of the contract

Our proposed solution for Agile contracts consists of a double-
level contracting. To clarify our idea, see Figure 2, which exem-
plifies the proposed structure.

In European public procurement law, this is allowed by the rules
concerning the framework agreements. According to article 33 of
the directive 2014/24 EU, a contracting authority may conclude such
an agreement, observing the procedures provided by the directive
(i.e. the ordinary awarding procedures). In fact:

“In general terms a framework agreement means an
agreement between one or more contracting authorities
and one or more economic operators, the purpose of
which is to establish the terms governing contracts to
be awarded during a given period, in particular with
regard to price and, where appropriate, the quantity
envisaged.” §33.1, Directive 2014/24 EU.

The purpose is to establish the two-level contractual governance.
In our case, such a structure between one or more authorities and
a single operator is appropriate. The first level contract defines, in
general terms, all customer’s needs, and in particular the context
in which the software will be used to meet such needs:

e the high level definition of software’s functionalities and
architecture;

o the quality and performance standards to be reached (mini-
mum standards and higher ones, possibly to be paid more
by the customer);

o the criteria for the the product evaluation and possibly the
definition of done;

o the time frame;

o the general terms of the compensation.

The framework agreement should be limited in time: e.g., not
exceeding 4 years. With second level contracts, parties agree the
specifications within a variable number of iterations, considering
the points listed before, as sketched in Figure 2. Before each iter-
ation both parties fine tune the first level issues, in order to meet
iteration’s scope. In particular, the object of each iteration is speci-
fied, along with software’s functionalities, performance standard,
product evaluation, terms of compensation and time frame. In other
words, the framework agreement (first level contract) opens the
way to a number of subsequent detailed contracts for the execution
of the whole project, each of which can be adjusted according to
the results of the previous ones.

The mentioned public procurement rules permit the awarding
of such single contracts to the contractor, under the framework
agreement, without any new competitive procedure. The only ex-
ception is if the contracting authority changes, or if the object of

D. Russo et al.

the framework agreement is substantially modified. The key provi-
sion therefore can be found in the European directive, according to
which:

“Where a framework agreement is concluded with a
single economic operator, contracts based on that agree-
ment shall be awarded within the limits of the terms
laid down in the framework agreement” and “For the
award of those contracts, contracting authorities may
consult the economic operator party to the framework
agreement in ‘writing, requesting it to supplement its
tender as necessary” §33.3, Directive 2014/24 EU.

Indeed, the possibility to design a multi-level contract, where
specifications are negotiated before each iteration, is an important
legal tool for Agile purposes. From our point of view, supplementing
the tender would mean negotiating and finding an agreement on
the fine tuning aspects necessary before each one of the progressive
functional steps or scrum sprints Moreover, such a double-level
structure of the contractual relationship between the customer and
the contractor has the advantage that the framework agreement
does not oblige the customer to engage in the second level con-
tracts.By this way, the customer always has the power to terminate
the relationship, after each iteration. This may happen for several
reasons, like for instance any dissatisfaction of the relationship,
although the general budget of the framework agreement has not
been fully spent.

4.3 The competition

The competition is a key element for public procurements since it
guarantees constitutional rights, such as open concurrency, impar-
tiality, and accountability. It is basically a trade-off between such
rights and the utility of the contract. In other words, although it
would be more effective to deregulate the competition through ad
hoc designs, constitutional rights need to be uphold. Thus, the com-
petition should ideally be a Pareto-optimal solution between these
contrasting forces. The law guarantees certain degrees of flexibility,
in order to find the best partner.

In our case, such an opportunity arises from the fact that the
competitive awarding procedure would be limited at the level of the
framework agreement with its above indicated general elements of
the project. In practice, an efficient and effective selection of the
general elements is pivotal to make sure that the advantages of the
best offer will be fully reflected afterwards. Doing so will assure that
the second level contracts will be best suited for the general scope
of the software system, considering the afterwards non competitive
negotiation between the parties for the fine tuning of any iteration.
Achieving such a goal needs some caution, especially about the
link between quality and performance standards, on one hand, and
compensation on the other.

4.4 Economic value

The determination of the economic value has to be clear and effec-
tive. In the case of framework agreements and subsequent second
level contracts, it is possible and appropriate to set binding gen-
eral rules about compensation. This should be clearly stated in the
framework agreement, and applied in the negotiation of the second
level contracts. Thus, in the first level contract, the parties should

Contracting Agile Developments
for Mission Critical Systems in the Public Sector

SiFP: 100

Iterationy

t: 4 weeks

2° Level Contracts 1° Level Contract

Performance Standards

Functionalities & Architecture

Terms of Compensation

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

Product Evaluation

Time Frame

e Iterationy
SiFP: 70

t: 3 weeks

Figure 2: Structure of the contract

fix the compensation structure, detailing the cases of special awards
and penalties.

As an example, they could agree that for each iteration, a mix of
a fix rate and a decremental person-day rate (in order to encour-
age the contractor to be efficient in execution) could be negotiated.
Moreover, a quality-related awarding system may also be helpful
to enhance project’s quality, such as a bonus-malus mechanism. On
such a basis, second level contracts that are continuously negotiated
before each further iteration should respect the general awarding
schema. However, small modification to adjust specific necessities
may be further negotiated to fully align divergent interests. In other
terms, once the general criteria are set in the first level contract,
the price for each iteration derives from the corresponding negoti-
ated estimation of the cost of the software system, along with the
upon agreed calculation criteria. This means that proper evaluation
techniques for Agile contracts are not only possible, but also rec-
ommended for the reasons explained in Section 3. Indeed, the most
important issue to preserve in an Agile relationship is the alignment
of interests. Since most of possible discussions may be around the
effective value of the software, identifying an accountable and clear
way to define the economic value, within the exposed provisions
concerning compensation of the contractor, motivates both parties
to work together to get the best possible outcome.

4.5 Provision of accountable variations

Variations are of great interest for Agile contracts, since they intro-
duce the necessary flexibility along contract life. Generally speaking,
public procurement rules make variations of contracts possible, but
with clear limits. Any variation should be forbidden if one of these
cases occur:

(1) if the variation causes a modification such that a competitor
could had won the competition, or if other competitors could
had participated to the selection process;

(2) if the economic equilibrium of the contract changes signifi-
cantly;

(3) if the object of the contract is heavily extended and/or modi-
fied.

This applies to the framework agreement and to any amendment
of it. Fine tuning of second level contracts would not mean any
variation. Our solution simply consists in limited specifications
concerning each iteration. Of course, variations may be possible
in the case that the system’s scope of the iteration is consistently
different with the first level contract and can not match the general
terms. For such an event, the general limits to variations should
be respected. Although this legal tool is an element of flexibility,
a parsimonious use of it is recommended. In fact, a frequent use
of variation may harm the general contractual governance. This
would introduce opacity in the relationship which should avoided
to enhance information symmetry between the parties.

4.6 Verification

Finally, also the verification needs to fulfill some legal requirements.
Once built, or even during its development, the software should be
inspected to see if it fulfills the software’s scope. Such inspection
should be accountable and the techniques defined upfront.

This complies very well with the Agile philosophy. Since the
verification process is transparent, interests alignment is facilitated.
The implementation of non-invasive tools is considered an effective
way to enhance accountability along all the development process.

5 SETTING UP THE CONTRACTS

In this section of the paper we are going to sketch two possible im-
plementation of our proposal, based on the contracting of Function
Points and Scrum Sprints. These two examples should be embedded
in the first level contract to determine the terms of compensation.

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

A key point for the contractual governance is the agility of the
assessment of the economic value. Too complex metrics are not
suited for such an environment, since it clashes with the need for
speed of Agile iterations. Ideally, any assessment metric which
assure fast and reliable (i.e., objective) outcomes is suitable for this
purposes. Accordingly, we propose here two valuable but different
examples. Functional size measurement methods focus on the code,
while Scrum Sprints on the process. Clearly, both have upsides
and downsizes briefly discussed. Although there may not be one
best solution, rather several Pareto—optimal ones, it is of pivotal
importance to understand the own contractual environment under
which the software system is developed to use one of the proposed
solutions or even new ones.

5.1 Contracts with Function Points

Function Point Analysis (FPA) [3, 40] provides enough objectivity
in the evaluation process, independently from the used technol-
ogy. This is the reason why FPA is a suitable option to guarantee
the proper flexibility of the Agile methodology within the Italian
constitutional framework discussed before. For the sake of simplifi-
cation, also novel estimation techniques based on FPA, like Simple
Function Points (SiFP) [14, 20], may represent a suitable and easy
measurable metric, as already discussed in Section 3.

The definition process of SiFP - a quite straightforward functional
size measurement method - is represented in Figure 3. The idea
behind SiFP is to provide a good evaluation of the functional size
of an application, without redundant basic functional components
(BFC) i.e., DET - Data Element Type, FTR - File Type Referenced,
and RET - Record Element Type. Therefore, only two BFCs are
needed, according to this method:

e Unspecified Generic Data Group (UGDG)
e Unspecified Generic Elementary Process (UGEP)

Consequently, BFCs are of only two types: data object type, and
transactional object type. Hence, the size of any software applica-
tion may be expressed as the number of SiFP:

SiFP = MyGpG + MuGep ¢Y)

Where Mygpg and My ggp indicate the measures of the size
of BFCs, as a result of IFPUG measurement rules. Interestingly,
FPA measurements take into consideration e.g., new development,
functional enhancement, and software assets, which SiFP does not.
Still, SiFP are convertible to traditional FPA (like IFPUG), due to
the high correlation through a regression analysis [1]. Therefore,
from a practical perspective SiFP are convertible to any FPA, since
functional size measurement methods are strongly correlated from
a structural point of view.

Moreover, besides the simplification of BFCs, measurement weights

are fixed, with respect to IFPUG. In particular, [20] propose that:

SiFP = 4.6UGDG + TUGEP @)

Where SiFP are 4.6 times the number of elementary processes,
without considering the primary intent, and 7 times the number
of logical data files, without considering if they are internal or
external.

D. Russo et al.

Software Application Functional Specifications

UGEP UGDG

Figure 3: SiFP definition structure

Another strong point in favor of Function Points is that these
are known and already used within the Italian public sector. This
means that it would be quite effective to write an Agile contract,
based on the already acquired experience. FPA provides the right
tension between interests in order to let align them, since it is an
accountable process. Moreover, a bonus-malus effect would also
help towards this direction. This mechanism should induce the
provider to deliver not just average quality functionalities but high-
value ones. We remark that although the delivered functionality
can be first estimated and then assessed by FPA, there is limited
guarantee for quality. In fact, FPA does not assess quality itself but
only if the software computes a certain number of functionalities.
Exceptional delivered quality has to be economically recognized,
beyond the delivered functionalities. Similarly, also low quality
should be discouraged. For this reason the use of a non-invasive
quality tool to assess ongoing quality of software products is of
greatest importance. It does not represent a legal issue, since the
customer can easily include this methodological requirement in the
competition call. Such a tool may compute not only the number
of developed functionalities but also judge their quality, according
to industrial benchmarks (i.e., ISO/IEC 25010:2011). An example of
such a tool is SonarQube [10].

So, also the development methodology becomes of importance,
since it is complementary to the non-invasive tool. Furthermore,
the Test Driven Development (TDD) method [6] provides a useful
approach to develop mission critical software with the highest
attention to quality and security. For this reason we now sum up
the three keystones of an Agile contract with FPA. In our proposal
Law & Economics aspects of contracts are maximized, upholding
constitutional duties of the contracting authority.

(1) Specification costs are minimized by the methodology. After
several iterations fine-granular functionalities are negoti-
ated.

(2) Dynamic inconsistency is is mitigated by a bonus-malus
mechanism.

(3) Non verifiable actions are mitigated by a Test Driven Devel-
opment and the implementation of non invasive metrics.

3See for instance http://www1.interno.gov.it/mininterno/export/sites/default/it/assets/
files/22/0011_disciplinare_di_gara.pdf retrieved on Aug. 23, 2017

http://www1.interno.gov.it/mininterno/export/sites/default/it/assets/files/22/0011_disciplinare_di_gara.pdf
http://www1.interno.gov.it/mininterno/export/sites/default/it/assets/files/22/0011_disciplinare_di_gara.pdf

Contracting Agile Developments
for Mission Critical Systems in the Public Sector

These are the main characteristics for a transparent relationship
which maximize the contract utility.

5.2 Contracts with Scrum Sprints

Another suitable way to write Agile contracts for the public ad-
ministration are Sprint-based ones. In this case, Scrum Sprints are
the base for terms of compensation. So, as in the other case, func-
tionalities are described at a high level in the object of the contract
but the economic value is not determined by the FPA but by the
development iterations. It is a sort of body rental contract, where
man-hours are organized in Sprints. Thus, for a team with 5 people
for an iteration of 5 weeks (considering a 40 hours week), each
Sprint will account for 5000 hour/person. The requirements refine-
ment (through User Stories and continuous iterations), is part of the
contract life. Both parties should be aware of the methodology, not
only to avoid misunderstanding but also to prevent miscalculation
of the effort. The aim is to build a win-win relationship, where
parties are aligned to the goal and are treated fairly. A win-lose
solution would be rather suboptimal, since there is no guarantee
for a long-term engagement.

(1) Sprint definition has to be clear in terms of temporal duration
and people committed. In such contracts people play the
greatest role. The level of expertise, seniority, and skill should
be taken into consideration while designing Scrum teams.

(2) The chosen Agile method has to be clear to both customer
and provider to organize and setup the development. User
Stories estimation is a sensible issue here. An overestimation,
but also a underestimation may lead to misinterpretations
between the parties as also frustration.

(3) The bonus-malus mechanism described in the previous sec-
tion should be clearly stated.

(4) The use of monitoring and non-invasive tools is also an
important issue to both interests alignment of all parties and
improving accountability, as explained in the last section.

6 CASE STUDY

The ideas exposed in this paper have been elaborated and evaluated
in a contract with the Italian Defense Acquisition Process, partially
described in [23]. For this project we did not use the proposed
contractual schema, although some principles were implemented
(e.g., the bonus-malus mechanism).

The reference project has been the LC2Evo technology demon-
strator. The project lasted about 87 weeks of work, that is, about
two years. Sprints lasted 4 or 5 weeks each. Overall, the cost of the
project was about 2.6 Million Euro. In this case instead of Function
Points, Scrum Sprints have been used to define the contract. After
each Sprint, the Definition of Done and acceptance criteria were
assessed by external Army engineers. Their assessment were also
useful for the subsequent Sprint planning.

A generic +50% increment factor was applied to take into ac-
count the better effectiveness and the reduced risk associated to the
LC2Evo improved Agile development environment, with respect to
the previous Waterfall development cycle.At the end of the project
this +50% increment factor has proven to be pessimistic, since the
effectiveness of the improved Agile development cycle was much

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

Agile

Waterfall

SPRINT#

Figure 4: Effectiveness of the contract structure

better than expected. Moreover, due to an important cost reduction,
leftover funds where used for extra hardware improvements.

Using a time and material estimation for a predetermined number
of iterations (six to eight as we refer to LC2Evo) may be seen as a
sort of “body rental” contract, where man-hours and materials are
allocated in Sprints. The requirements refinement (through User
Stories evolution and continuous iterations) was included in the
contract. Both parties were trained and fully aware of the Scrum
method, to avoid misunderstanding and prevent miscalculation of
the effort. Figure 4 summaries the results that have been obtained
using this approach. Unfortunately, specific details are classified
for national security reasons. However, the resulting proportion
provides a fairly accurate visualization of what happened. After an
initial phase, the productivity increase of the new Agile approach
was quite evident. Still, the merit of such productivity improvement
can not be merely attributed to the different contracting structure,
since the project followed a more traditional Arms & Materials
contract. However, organizing the contract in an Agile fashion was
a clear prerequisite for the project’s success.

Finally, this case study gave us the relevant experience to design
the new Agile contractual scheme, suitable for the Italian public
administrations.

7 CONCLUSIONS

This paper is an attempt to carry out a foundational work about Ag-
ile contracts. Starting from the Law & Economics of contracts, we
explained how relevant principles should be wider understand by
the software engineering community. We pointed out how, through
the alignment of interests, reduction of asymmetry and flexibility,
Agile could be wider use in today’s software engineering environ-
ment, especially within the Public Sector. Indeed, the awareness of
software engineers about the economic motivations behind a con-
tractual relationship is of pivotal importance to enhance software
quality. Information symmetry is of greatest importance for Agile
software development, due to structural reasons related to the day-
by-day relationship with the customer and the short development—
deployment iterations.

Companies which strive for competitive advantages can easily
customize Agile contracts according to the contractual freedom
principle (i.e., art. 1322 cc). This is not the case for public adminis-
trations which need to follow strict constitutional duties regarding
public procurements. However, also these organizations (especially
in the defence & security domain) need their software systems
to evolve rapidly, to address new-world scenarios. Therefore, this

ICSE-SEIS’18, May 27-June 3 2018, Gothenburg, Sweden

paper provides the first discussion about Agile contracting for the
Public Sector.

Doing so, we highlighted the keystone for Agile contracting
within the Italian public administration. These recommendations
have a direct impact on all civil law countries, since they face similar
procurement law principles. To contextualize better our proposal,
we used a case study where Agile contracting principles has been
implemented. The outcomes of the presented project are positive
and significant.

Future work will proceed in two main directions. Firstly, both
foundational as empirical studies about the implications and im-
plementation of Agile contracts will be carried out. Accordingly,
a detailed framework for an Agile contract for the Italian public
administration will be presented in the near future. Secondly, the
empirical validation of such contracts needs to be further studied.
In particular elements related to the assessment of non-invasive
measurements, effort estimation based on Sprints or SiFP, as well
as social aspects of the negotiation should be considered for further
studies.

ATTRIBUTION

This paper is a joint contribution of all authors which are listed
in order of contribution. Authors contributed according to their
different domain knowledge in an interdisciplinary fashion.

ACKNOWLEDGMENTS

The authors would like to thank Col. Franco Cotugno — SEGRED-
IFESA/DNA, for the initial idea at the basis of this paper. We also
thank for their substantial support: PRIN GAUSS (Governing Adap-
tive and Unplanned Systems of Systems); the Italian Ministry of
Defense with the PNRM AMINSEP (Agile Methodology Implemen-
tation for a New Software Engineering Paradigm definition) project;
the Italian Interuniversity Consortium for Informatics (CINI), the
Institute of Cognitive Sciences and Technologies of the Italian Na-
tional Research Council, and Innopolis University.

REFERENCES

[1] A.Z. Abualkishik, F. Ferrucci, C. Gravino, L. Lavazza, G. Liu, R. Meli, and G.
Robiolo. 2017. A study on the statistical convertibility of IFPUG Function Point,
COSMIC Function Point and Simple Function Point. Information and Software
Technology 86 (2017), 1-19.

[2] G. Akerlof. 1970. The market for "lemons": quality uncertainty and the market
mechanism. The Quarterly Journal of Economics (1970), 488—500.

[3] A. Albrecht and J. Gaffney. 1983. Software function, source lines of code, and
development effort prediction: a software science validation. IEEE Transactions
on Software Engineering 9, 6 (1983), 639-648.

[4] R. Atkinson. 1999. Project management: cost, time and quality, two best guesses
and a phenomenon, its time to accept other success criteria. International Journal
of Project Management 17, 6 (1999), 337-342.

[5] S. Atkinson and G. Benefield. 2013. Software Development: Why the Traditional
Contract Model Is Not Fit for Purpose. In Proc. HICSS46, Software Track. IEEE
Computer Society Press, Hawaii, 330-339.

[6] K.Beck. 2003. Test Driven Development By Example. Addison-Wesley, Boston.

[7] SJ.Berman. 2012. Digital transformation: opportunities to create new business
models. Strategy & Leadership 40, 2 (2012), 16-24.

[8] M. Book, V. Gruhn, and R. Striemer. 2012. adVANTAGE: A fair pricing model for
agile software development contracting. In Agile Processes in Software Engineering
and Extreme Programming, C. Wohlin (Ed.). Springer, Malmo, Sweden, 193-200.

[9] M. Book, V. Gruhn, and R. Striemer. 2016. Tamed Agility. Springer.

[10] G.Campbell and P.Papapetrou. 2013. SonarQube in Action. Manning Publications.

[11] P. Ciancarini, S. Litvinov, A. Messina, A. Sillitti, and G. Succi (Eds.). 2018. Proc. 5th
Int. Conf. on Software Engineering for Defense Applications. Advances in Intelligent
Systems and Computing, Vol. 717. Springer.

[12

==
L=t

(15]

[16

(17]

(18]

(19]

[20

[21]
[22]

(23]

[39

[40]

[41

[42

D. Russo et al.

P. Ciancarini, A. Messina, F. Poggi, and D. Russo. 2017. Agile Knowledge Engineer-
ing for Mission Critical Software Requirements. In Knowledge Engineering and
Software Engineering - Methods, tools, and case studies, G. Nalepa and J. Baumeister
(Eds.). Springer-Verlag, Berlin, 1-21.

C. Ebert and M. Paasivaara. 2017. Scaling Agile. IEEE Software 6 (2017), 98-103.
F. Ferrucci, C. Gravino, and L. Lavazza. 2016. Simple function points for ef-
fort estimation: a further assessment. In Proc. 31st ACM Symposium on Applied
Computing. 1428-1433.

B. Hermalin, A. Katz, and R. Craswell. 2007. The Law and Economics of Contracts.
In Handbook of Law and Economics, M. Polinsky and S. Shavell (Eds.). Elsevier,
3-138.

L. Jacobson, I. Spence, and E. Seidewitz. 2016. Industrial-scale agile: from craft to
engineering. Commun. ACM 59, 12 (2016), 63-71.

M. Lapham et al. 2011. Agile Methods: Selected DoD Management and Acquisition
Concerns. Technical Report CMU-SEI-11-TN-2. Software Engineering Institute,
Carnegie Mellon University.

M. Lapham et al. 2016. RFP Patterns and Techniques for Successful Agile Contracting.
Technical Report CMU-SEI-13-SR-25. Software Engineering Institute, Carnegie
Mellon University.

M. Lapham, M. Bandor, and E. Wrubel. 2014. Agile Methods and Request for
Change (RFC): Observations from DoD Acquisition Programs. Technical Report
CMU-SEI-13-TN-31. Software Engineering Institute, Carnegie Mellon University.
L. Lavazza and R. Meli. 2014. An evaluation of simple function point as a re-
placement of IFPUG function point. In Proc. Joint Conference of the International
Workshop on Software Measurement and the International Conference on Software
Process and Product Measurement. IEEE, 196—206.

D. Leffingwell. 2016. SAFe® 4.0 Reference Guide: Scaled Agile Framework® for
Lean Software and Systems Engineering. Addison-Wesley Professional.

J.L. Letouzey and M. Ilkiewicz. 2012. Managing technical debt with the SQALE
method. IEEE Software 29, 6 (2012), 44-51.

A. Messina, F. Fiore, M. Ruggiero, P. Ciancarini, and D. Russo. 2016. A new Agile
Paradigm for Mission Critical Software Development. Crosstalk - The Journal of
Defense Software Engineering 29, 6 (2016), 25-30.

R. Myerson. 2004. Justice, Institutions, and Multiple Equilibria. The Chicago
Journal of International Law 5 (2004), 91.

K. Nidiffer, S. Miller, and D. Carney. 2014. Agile Methods in Air Force Sustainment:
Status and Outlook. Technical Report CMU-SEI-14-TN-9. Software Engineering
Institute, Carnegie Mellon University.

K. Nidiffer, S. Miller, and D. Carney. 2014. Potential Use of Agile Methods in Selected
DoD Acquisitions: Requirements Development and Management. Technical Report
CMU-SEI-13-TN-6. Software Engineering Institute, Carnegie Mellon University.
OECD. 2016. Stimulating digital innovation for growth and inclusiveness. (2016).
A. Opelt, B. Gloger, W. Pfarl, and R. Mittermayr. 2013. Agile Contracts. Wiley.
S. Palmquist, M. Lapham, S. Garcia-Miller, T. Chick, and I. Ozkaya. 2014. Parallel
Worlds: Agile and Waterfall Differences and Similarities. Technical Report CMU-
SEI-13-TN-21. Software Engineering Institute, Carnegie Mellon University.

E. Pilios. 2015. Contracting practices in traditional and agile software development.
Ph.D. Dissertation. University of Leiden, NL.

M. Porter and J. E Heppelmann. 2014. How smart, connected products are
transforming competition. Harvard Business Review 92, 11 (2014), 64-88.

M. Porter and J. E Heppelmann. 2015. How smart, connected products are
transforming companies. Harvard Business Review 93, 10 (2015), 96-114.

M. Porter and V. E. Millar. 1985. How information gives you competitive advan-
tage. Harvard Business Review 63, 4 (1985), 149-160.

R. Posner. 1977. Gratuitous Promises in Economics and Law. Journal of Legal
Studies 6, 2 (1977), 411-426.

R. Pressman. 2014. Software Engineering: a Practictioner’s Approach. McGraw-Hill.
D. Russo. 2016. Benefits of Open Source Software in Defense Environments. In
Proc. 4th Int. Conf. in Software Engineering for Defence Applications (Advances in
Intelligent Systems and Computing), Vol. 422. Springer-Verlag, Berlin, 123-131.
D. Russo, V. Lomonaco, and P. Ciancarini. 2018. A Machine Learning Approach
for Continuous Development. In Proceedings of 5th International Conference in
Software Engineering for Defence Applications. Springer, 109-119.

C. Santana, F. Leoneo, A. Vasconcelos, and C. Gusmao. 2011. Using Function
Points in Agile Projects. In Agile Processes in Software Engineering and Extreme
Programming (Lecture Notes in Business Information Processing), Vol. 77. Springer,
176-191.

StandishGroup. 2016. The CHAOS report. (2016). http://www.standishgroup.
com/outline

C. Symons. 1988. Function Point Analysis: Difficulties and Improvements. IEEE
Transactions on Software Engineering 14, 1 (January 1988), 2-11.

E. Wrubel and J. Gross. 2015. Contracting for Agile Software Development in the
Department of Defense: An Introduction. Technical Report CMU-SEI-15-TN-06.
Software Engineering Institute, Carnegie Mellon University.

E. Wrubel, S. Miller, M. Lapham, and T. Chick. 2014. Agile Software Teams: How
They Engage with Systems Engineering on DoD Acquisition Programs. Technical
Report CMU-SEI-14-TN-13. Software Engineering Institute, Carnegie Mellon
University.

http://www.standishgroup.com/outline
http://www.standishgroup.com/outline

	Abstract
	1 Introduction
	2 Related Work
	3 The Law & Economics of Agile contracts
	4 The Italian Case
	4.1 The object of the contract
	4.2 The structure of the contract
	4.3 The competition
	4.4 Economic value
	4.5 Provision of accountable variations
	4.6 Verification

	5 Setting up the contracts
	5.1 Contracts with Function Points
	5.2 Contracts with Scrum Sprints

	6 Case Study
	7 Conclusions
	References

