Poster: a Conceptual Model for Cooperative Thinking

Daniel Russo
University of Bologna - DISI
daniel.russo@unibo.it

ABSTRACT

Training computer scientists to address wicked problems means
to focus respectively on the individual capability to think in a
computational-oriented way (i.e., Computational Thinking), and
on the social dimension of coding (i.e., Agile Values). In this study
we propose the conceptual model of Cooperative Thinking, a new
education construct of team-based computational problem solving.
Cooperative Thinking is not only the sum of Computational Think-
ing and Agile Values, rather it is a new overarching competence
suitable to deal with complex software engineering problems. We
suggest to tackle the Cooperative Thinking construct as an edu-
cation goal, to train new generations of software developers to
Pareto-optimize both their individual and teaming performances.

CCS CONCEPTS

« Applied computing — Education; - Software and its engi-
neering — Software creation and management; s Human-centered
computing — Collaborative and social computing;

KEYWORDS
Computational Thinking, Agile Values, Cooperative Thinking.

ACM Reference format:

Daniel Russo, Marcello Missiroli, and Paolo Ciancarini. 2018. Poster: a Con-
ceptual Model for Cooperative Thinking . In Proceedings of 40th International
Conference on Software Engineering Companion, Gothenburg, Sweden, May
27-June 3, 2018 (ICSE °18 Companion), 2 pages.
https://doi.org/10.1145/3183440.3195062

1 CONTEXT

New skills are required for the future workforce to get employed
in the software engineering domain [6]. Future workers will need
to think differently, to solve their working tasks. Indeed, tasks
solved by software systems are becoming more complex by the
day. Some problems in the real world can be classified as wicked
problems which usually do not have an unique solution but many
Pareto-optimal ones.

Accordingly, the education system needs to train students on
such new skills. Novel initiatives were promoted by institutions
in several countries, like for instance the initiatives “21st century
skills” [10] in the US and “Europe’s Key skills for Lifelong Learn-
ing” [5] that prompted the redefinition of Computer Science and
Software Engineering curricula:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5663-3/18/05.

https://doi.org/10.1145/3183440.3195062

Marcello Missiroli
University of Bologna - DISI
marcello.missiroli@unibo.it

Paolo Ciancarini
University of Bologna - DISI
paolo.ciancarini@unibo.it

Computing proficiency became a traversal skill for all domains,
complementing the soft skill areas!. Modern education theories,
such as Constructionism , promote critical thinking as opposed to
mere memorization; teaching practices such as Cooperative Learn-
ing [7] and Problem-based learning also introduce organizational
and social skills in the educational process. However, a grounded
analysis about the educational constructs used in Computational
Thinking (CT) and Agile Values (AV) is missing in literature. Sin-
gle constructs were presented, like Computational Thinking [12]
for the Computer Science domain, in general, and Agile Values
[4] for the Software Engineering one in particular. Surprisingly, a
study about a comprehensive educational implementation of such
constructs is lacking. With regard to software engineering educa-
tion, CT and AV represent core skills of software development: the
individual ability to produce computationally efficient code and
the social ability to interact with peers and stakeholders to deliver
effective software.

We argue that these two core skills are part of the higher level
skill of Cooperative Thinking (CooT), which is, in our view, the ability
to describe, recognize, decompose problems and computationally solve
them in teams in a socially sustainable way [9].

To be a valuable construct, CooT should not be just the sum
of two constructs, rather it should “explain” other crucial educa-
tional constructs. Consequently, we propose a conceptual model,
explaining the theoretical motivations of our hypotheses.

2 RESEARCH MODEL AND HYPOTHESES

Every theoretical construct, as the relations among constructs,
needs to be grounded in literature, since the epistemological view
of science is not disruptive but incremental. Accordingly, we are
now presenting the conceptual model of Cooperative Thinking,
based on our scholarly experience and related works.

Effect of Computational Thinking on Cooperative Think-
ing. In order to enhance the new construct CooT, individual CT
skills need to be developed to interact in a constructive way within
the group, to suggest useful insights. After Wing’s paper [12], sev-
eral frameworks have been proposed to operationalize it in the
daily educational system [2]. The general idea is to educate stu-
dents to think in a computational-friendly way to improve coding
and problem-solving tasks. As such, it is a pivotal individual skill-
set that any future worker will bring to its team. Team performance
is strictly related to quality of its individual assets [3]. Therefore,
the quality of the developed CT skills will affect positively future
teams performance.

According to this background, we formulate our first hypothesis:

H;: Computational Thinking positively influences Co-
operative Thinking

!https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all


https://doi.org/10.1145/3183440.3195062
https://doi.org/10.1145/3183440.3195062

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

Effect of Agile Values on Cooperative Thinking. While Com-
putational Thinking is the individual skill useful to solve problems,
Agile Values educate people to team up. Agile Values offer a variety
of points of view required to solve difficult or wicked problems.
To such problems there is no single “best solution”, but several
Pareto-optimal ones which may change over time.

With particular regard to software engineering, complex system
design is a typical wicked problem [13]. Satisfying unpredictable
customer’s expectations and requirements becomes harder and
harder at a steady path, which is beyond the limit of solvability
for any single programmer. Delivering valuable software on time
has been one of the major efforts of software development method-
ologies in the last years. Although the definition of “on time” may
look clear (since it is related to a deadline), it is strictly correlated
to “valuable”, which is a more vague definition. With reference to
the ISO 25010:2011 standard on software quality, the customer may
perceive as valuable aspects related to the Quality in Use dimension.
Nevertheless, a software with high Quality in Use but a low e.g.,
maintainability (which is related to the Product Quality) could not
be really defined “valuable”. The aspect of maintainability may be
related to poor refactoring due to time constraints.

In this example, it is clear that value and time are two sides
of one coin. Mastering such challenges requires a specific skill-
set. The Agile Manifesto proposed a new perspective on software
development, based on values that clashed with the established
culture of time, based on linear hierarchies, top-down decision mak-
ing and, in general, accepting the current system without voicing
dissent or criticism [1]. The most significant change is the para-
mount importance assigned to communication and social interaction,
superseding the internal organizational rigidity, documentation,
contracts, roles, and more. In time, this led to the formalization im-
portant concepts (such as changing requirements, self-organizing
teams, personal responsibility, ...) and programming practices (pair
programming, test-first development, continuous integration, ...).
Agile has proven in several contexts its usefulness, and it is now an
established development model and its adoption is steadily growing
[8].

Accordingly, Agile Values are an important skill-set for Cooper-
ative Thinking, leading to our second hypothesis:

Hy: Agile Values positively influence Cooperative Think-
ing

Effect of Cooperative Thinking on Complex Problem Solv-
ing. As proposed with H; & Hp, the construct Cooperative Thinking
is mainly explainable with Computation Thinking and Agile Values.
According to our empirical experience [11], it is not just the sum
of these constructs. Rather it is a useful proxy to develop further
fundamental skills. Complex Problem Solving is the most suited
construct to identify the most relevant skills, as suggested by [6].
According to its definition it is “Developed capacities used to solve
novel, ill-defined problems in complex, real-world settings”. In other
words, it is another way to define wicked problems.

Crucial future skills can not be taught with an old—fashioned
curriculum. From a pedagogical perspective we started questioning
ourselves how to teach best students to the management of wicked
problems. With regard to Computational Thinking and Agile Values

D. Russo et al.

Complex
Problem Solving

Cooperative
Thinking

Computational
Thinking

Agile Values

Figure 1: Theoretical framework and hypotheses

we realized that alone, they are not sufficient. CT deals with individ-
ual capabilities and is deeply routed in the traditional educational
system of “solo” learners. On the other hand, AV per se, are not
enough deal with such problems. Good interaction is a valuable
driver but not the asset to solve wicked issues.

The idea of Cooperative Thinking, is that of a construct which
is able to teach students to tackle Complex Problem Solving as a
proxy of wicked problems. Therefore, our last hypothesis is:

Hs: Cooperative Thinking positively influences Complex
Problem Solving

Future work. This conceptual model is preliminary for an em-
pirical validation e.g., with Structural Equation Modeling.

REFERENCES

[1] Agile Alliance. 2001. Agile manifesto. Online at http://www. agilemanifesto. org 6,
1(2001).

[2] ACM Computer Science Teachers Association. 2011. Operational Definition
of Computational Thinking. (2011). http://www.csta.acm.org/Curriculum/sub/
CurrFiles/CompThinkingFlyer.pdf

[3] M.RBarrick, G. L Stewart, M. J Neubert, and M. K. Mount. 1998. Relating member
ability and personality to work-team processes and team effectiveness. Journal
of Applied Psychology 83, 3 (1998), 377-391.

[4] K.Beck and C. Andres. 2004. Extreme programming explained: embrace change.
Addison-Wesley.

[5] European Communities. 2007. Key competences for lifelong learning: European
Reference Framework. (2007).

[6] World Economic Forum. 2016. The Future of Jobs: Employment, Skills and Work-
force Strategy for the Fourth Industrial Revolution.

[7] D.Johnson et al. 1994. Cooperative learning in the classroom. ERIC.

[8] Y. Lindsjern, D. IK Sjeberg, T. Dingsoyr, G. R Bergersen, and T. Dyba. 2016.
Teamwork quality and project success in software development: A survey of
agile development teams. Journal of Systems and Software 122 (2016), 274-286.

[9] M. Missiroli, D. Russo, and P. Ciancarini. 2017. Cooperative Thinking, or: Com-
putational Thinking meets Agile. In Proc. CSEE&T. IEEE.

[10] The Glossary of Education Reform. 2016. 21st century skills.
http://edglossary.org/21st-century-skills/. (2016).

[11] D. Russo, M. Missiroli, and P. Ciancarini. 2018. Cooperative Thinking: Analyzing
a New Framework for Computer Science Education. Technical Report.

[12] J. Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006), 33-35.

[13] R.T Yeh. 1991. System development as a wicked problem. International Journal
of Software Engineering and Knowledge Engineering 1, 02 (1991), 117-130.


http://www.csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf
http://www.csta.acm.org/Curriculum/sub/CurrFiles/CompThinkingFlyer.pdf

	Abstract
	1 Context
	2 Research Model and Hypotheses
	References

