
Software Quality Concerns in the Italian Bank
Sector: the Emergence of a Meta-Quality Dimension

Daniel Russo, Paolo Ciancarini
Dept. of Computer Science, CINI & CNR-ISTC

University of Bologna
Bologna, Italy

{daniel.russo, paolo.ciancarini}@unibo.it

Tommaso Falasconi, Massimo Tomasi
Technology Strategy & Architecture

Deloitte Consulting
Milan, Italy

{tfalasconi, matomasi}@deloitte.it

Abstract—This paper reports on a Delphi-like study about the
Italian banking IT sector’s greatest concerns. A new research
framework was developed to pursue this vertical study: domain
and country specific, using a Mixed Methods approach. Data
collection was drawn in four phases starting with a high level
randomly stratified panel of 13 senior managers and then a
target-panel of 124 carefully selected and well-informed domain
experts. We have identified and dealt with 15 concerns about the
present situation; they were discussed in a framework inspired
by the ISO 25010 standard. After having mapped the concerns
within the ISO standard, we identified the emergence of a new
meta quality dimension which impacts both on software quality
and architectural description. Our inductive outcome lets this
meta dimension emerge connecting both ISO 25010 and ISO
42010 standards.

Keywords-Software Quality, Information Systems, Delphi
Study, Mixed Methods.

I. INTRODUCTION

This research focuses on the identification of some relevant
concerns in the Italian banking IT sector, investigating the
opinions of several stakeholders i.e., banks and outsourcing
companies, system integrators, software vendors, and con-
sultants. In order to pursue the study we surveyed experts’
opinions. For the panel composition we used the well-profiled
contacts of an established IT consulting firm. At the end of
the research process, we gathered results that we consider
highly valuable for the following reasons. The final panel was
composed of more than one hundred senior IT banking experts
who are mostly in top managerial positions. Moreover, this
is a vertical study of an IT banking sector in Italy, which
has a number of peculiarities that are comparable with other
countries. We report the emergence of a meta quality dimen-
sion, which links software quality and architectural description
standards. Finally, we used an innovative research method,
based on the epistemological paradigm of Mixed Methods
research [1].

The two authors belonging to this industry are concerned
about some growing issues that they are analyzing in the
Italian IT banking sector. Most of their customers raised
concerns about critical issues e.g., growing complexity of
the information systems, unjustified layers and middleware
stratification, difficult reverse engineering of their software
applications, and costs explosion.

We did not find any existent relevant papers which ad-
dressed these issues, so we performed a vertical study on
the Italian market. The banking sector in Europe, and more
specifically in Italy, has always been characterized by national
regulations and local software products that led to specific
technological solutions built by national vendors. Currently,
the most important Financial regulations are standardized
within the European Union, e.g. MIFID, and the European
Banking Authority is coordinating the national authorities,
so the regulation differences among countries are decreasing,
while the past national footprint remains significant in IT. In
fact, we know from experience that the information systems
of most banking institutions (especially tier 1 and banks)
are composed of a collection of custom made applications
and specialized software packages, even if in the software
market you can find while Integrated Solutions that are able
to cover all IT banking needs, without customization (COTS).
Such Integrated Solutions have been partially adopted for
a specific subset of banking products and processes or in
small banking institutes (tier 3), mostly due to a lack of
functionalities. The depicted scenario led to the growth of a
typical Banking Information System characterized by a high
number of applications and a spaghetti like architecture with a
huge number of custom based software interfaces. Moreover,
when dealing with the IT banking sector we know that country
specificity is high, since it is governed by domestic rules which
usually match the European ones but sometimes - possibly
often - follow autonomous paths. This crucial topic for the
economy needs more investigation, as suggested in [2].

Our results may be helpful in understanding in depth and
with high internal and external validity (due to the Mixed
Methods approach) the phenomenon of decreasing software
quality. We are also interested in collecting experts’ opinions
as they are shared among the community at large.

We used a research methodology which merged inductive
research (through Delphi) with a deductive one (survey-like),
to provide a comprehensive analysis of the problem. In these
terms, we integrated both forms of data collection within the
same research. So, we embed one form of data within another
to analyze different types of research questions [1].

We investigated the following research questions (RQ):
• RQ1: Which are the major software-related concerns in

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-SEIP.2017.10

61

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-SEIP.2017.10

63

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE
DOI 10.1109/ICSE-SEIP.2017.10

63

the Italian IT banking sector?
• RQ2: Are these concerns shared among the community

of experts of the Italian IT banking sector?
Finally, we tried to map the concerns we found in the

ISO 25010 standard, to assess them using an internationally
recognized reference.

The structure of this paper is as follows. In Section II a
short background explanation is given. We then present the
research design and details of the Delphi–like study that was
conducted, in Section III. This is followed by a presentation
of the results of our study in Section IV. In Section V we
discuss our findings, including the implications for research
and practice, as well as the threats to validity of this study.
Finally, in Section VI we conclude and outline future research.

II. BACKGROUND AND RELATED WORK

Billions of dollars are spent in software projects since their
success is an important competitive advantage of any organiza-
tion [3]. Software quality is the most important success factor
of information systems – “Software quality can determine the
success or failure of a software product in today’s competitive
market” [4]. Analysis of the software engineering literature
highlights the importance of product quality “in use” for
industries which strategically exploit software functions. The
available literature also largely supports the view that a critical
success factor for most of the initiatives in a domain like the
IT sector is the information available to guide and support the
management of software quality efforts [5].

Kan and Basili [6] refer to data-based decision making, an
approach that can be used for both software project and quality
management. They warn against the collection of excessive
and arbitrarily developed metric data. They emphasize the im-
portance of developing focused, accurate and useful measures
or metrics, which are based on specific managerial models.
The Goal/Question/Metric (GQM) model links metrics and
measures with the operational goals of the organization. The
goals of the firm are more clearly defined through their
translation into a set of quantifiable questions. The questions
then drive a specific set of metrics and data for collection and
provide a framework for their interpretation [6]. While GQM
is extremely flexible and adaptable to a variety of situations,
the most important reference for software quality is the ISO
25010 standard on software products quality and software in
use quality.

III. RESEARCH DESIGN

As researchers, we obviously have our epistemological bias,
which usually remains hidden or implicit, even if they deeply
influence our research [7]. Since we approached this research
in an innovative way, we clearly decide to use Pragmatism.
It derives from the work of Peirce, James, Mead, and Dewey,
and arises out of actions, situations, and consequences rather
than antecedent conditions (as in postpositivism) [8]. It focuses
on the research problem, rather than the method. This is the
philosophical ground for the Mixed Methods approach.

The pragmatic view does not commit to any system of
philosophy and reality. Like Mixed Methods, both quantitative
and qualitative assumptions are used. This is related to the
view that the world has an absolute unity. Truth is what
works at the time, it is not based in a duality between reality
independent of the mind or within the mind [1]. Therefore, in
Mixed Methods research, investigators use both quantitative
and qualitative data because they work to provide the best
understanding of a research problem [1].

This paper reports the results of a Delphi-like study modeled
on the Delphi methodology (qualitative) and survey (quanti-
tative). In order to put in evidence the threat factors we used
a phenomenological approach [9]. Moreover, the survey is a
semi-structured one so, beside closed questions based on an
hybridized-Likert scale, experts are asked to express their open
opinions about any single question. Thus, the survey itself is
mixed quantitative and qualitative.

Generally speaking, empirical software engineering is devel-
oping new research designs according to its research questions,
which may cross the threshold of traditional borders of the
discipline due to the pervasiveness of software [10], [11]. The
Delphi method is becoming a popular tool in the software
engineering discipline [12], even though it is still not well
known. On the other hands, Likert–based surveys are a popular
quantitative research method in software engineering [13]. We
first present a brief discussion of the Delphi method, since it
is the underpinning method of this research. Then we discuss
how the Delphi panel was selected, and provide details of
the Delphi process i.e., threats validation and the survey one.
Finally, we discuss the outcomes.

A. The Delphi-like Method

The Delphi method has proven a popular tool in Software
Engineering [12] and more in general in information systems
research [14], [15]. It allows to capitalize the experiences
of the expert panel in identifying key risk concerns in the
IT banking sector, identifying the most important factors by
continuous feedbacks. The objective is to explore valuable
informations through a structured process of knowledge collec-
tion from a panel of experts with controlled opinion feedbacks
[16]. The process consists of a series of rounds in which
each expert communicates his opinion through a structured
form i.e., questionnaire, structured interview, collected by
the researcher. It is an inductive data–driven approach, ideal
for explanatory studies for which little empirical evidence is
available [17]. Using a step–wise methodology the research
question is narrowed down, from a multitude of issues, to a
bunch of a few consensus-based factors [18].

After gathering experts’ concerns on the Italian IT banking
sector we consolidated it into 15 factors (RQ1) with a Delphi
style methodology. Then, we collected opinions and evalua-
tions about the factors with a “target-panel” of 124 profiled
experts (RQ2). The administration of the whole process is
represented in Figure 1.

626464

Fig. 1. Research administration process

B. Selection of Delphi Panelists
We are aware that the selection of panelists is the most

critical aspect of Delphi, especially for validity threats. A
lousy panel selection may compromise the whole qualitative
research. Thus, we mitigated this risk using an established
private dataset of an affirmed consultant firm; moreover the use
of a double panel using Mixed Methods enforces the validation
of both the questions and the answers. However, it still remains
the most important yet most neglected aspect of the Delphi
method [19]. Methodological literature agrees upon the fact
that the choice of experts is the single most difficult factor in
panel selection [20].

Hence, our greatest efforts were devoted to the selection
of the first and then the second panel. Since we intended to
perform a vertical study, country and sector specific, we put
a lot of attention to the choice of experts invited invited to
participate on the panels. We started from a privileged position.
We used an expert pool of an established IT consulting firm,
specialized in the banking sector, which works with all main
banking groups. So, we were able to address personally, highly
qualified experts (from the Italian IT banking sector). This
makes our panel highly reliable and representative.

The first panel was chosen using a stratified random
sampling. Strata were defined upfront, to define the sample
population. Companies and roles were chosen to have a fair
representation of the IT banking sector. The first panel did not
follow the population representation task regarding experience,
since we addressed explicitly senior experts, in agreement
with [20]. Also the target-panel was chosen with a stratified
random sampling, but inside a larger pool. We asked panelists
to give their opinion about the sector composition (companies
and roles) and also the name of other experts. Therefore,
we adjusted the sample population representation along with
our research journey, following a suggestion found in [1].
However, also for the target-panel we looked searched for
more senior opinions, adapting the research method to our
research purposes [21].

%

Company

Consultants 7 25%
Bank 6 21%
System Integrator 6 21%
Outsourcing 5 18%
SW Vendors 4 14%
Total 28 100%

Experience

>10 4 31%
>20 8 62%
>30 1 8%
Total 13 100%

Role

CEO/CIO 6 29%
Chief Data Officer 5 24%
Appl. Maint. Group Exp. 4 19%
IT Architect 4 19%
Maintenance Manager 2 10%
Sales 0 0%
Total 21 100%

TABLE I
PANEL COMPOSITION

In Table I we describe the demographic composition of the
first panel and in Table II that of the target-panel. We profiled
our panels in great detail, much more than traditional Delphi
studies. The guarantee of anonymity we gave to all experts
allowed a very open and truthful discussion.

We took into consideration three dimensions: (i) years of
experience, (ii) sector in which the experts worked, and (iii)
relevant roles they served in their careers. Obviously, sector
and role may be more than one per expert, since it is normal
to change job during any career path. In detail, these are the
dimensions and sub-dimensions surveyed:

Experience. We divided the experts into four groups: less
than 5 years, between 5 and 10 years, between 10 and 20
years, between 20 and 30 years, and more than 30 years of
experience. The greatest majority of our experts has more than
20 years of experience in the sector. Thus, we consider the
opinions of our panel of high value.

Companies. We profiled also different company types,
involved in the IT banking sector. Clearly, most experts
displayed an internal experience within a bank. The second
relevant companies are system integrators, since a high degree
of customization is needed for bank products. Consultants
and Outsourcing companies are also very important actors
for the IT banking sector, since most work is outsourced
to external workers or companies. Software vendors deliver
software packages products for banks. As stated before, soft-
ware packages are commonly used by small/medium sized
banking institutes to either address specific needs (e.g. loans,
deposit or transaction accounts) or support common processes
(e.g. accounts payable and receivables). According to our
experience, the composition of both the panel and the target-
panel represent a trustful representation and distribution of
companies in the Italian IT banking sector.

Role. (CEO/CIO) The Chief Executive Officer is the top
manager of software integrator or vendor companies, while the
Chief Information Officer is a board member, in charge of the

636565

%

Company

Bank 72 35%
System Integrator 41 20%
SW Vendors 34 17%
Consultants 33 16%
Outsourcing 23 11%
Total 203 100%

Experience

<5 8 6%
>5 1 1%
>10 23 19%
>20 72 58%
>30 20 16%
Total 124 100%

Role

Appl. Maint. Group Exp. 59 39%
CEO/CIO 32 21%
IT Architect 18 12%
Chief Data Officer 18 12%
Maintenance Manager 13 9%
Sales 8 5%
Other 2 1%
Total 150 100%

TABLE II
TARGET-PANEL COMPOSITION

information system of the bank. The Maintenance Manager
is in charge of the development and maintenance of IT
banking systems. The Application Maintenance Group Expert
is responsible for complex groups of IT banking applications.
The expert in charge of the IT banking architecture is the IT
Architect. Sales is a senior manager of the sales department of
a software vendor or system integrator. Finally, the Chief Data
Officer is an expert in industry standards and methodologies
(e.g., IEEE, ISO, ITIL, DAMA) and in charge of the bank’s
data governance. Also the distribution of roles within both
the panel and target-panel is representative of the Italian IT
banking sector, at our best professional knowledge.

The methods we used to compose the two panels varied
slightly. For example, we took into consideration for the target-
panel the role of sales managers, not considered before. We
had feedbacks that their role is also critical for the IT banking
sector, so we adjusted it along the research process (following
[1]). Senior experts were chosen for the first panel, with at
least 10 years of experience within the sector. In the target-
panel we wanted a wider and trustworthy representation of the
sector, so we included also junior people in the target-panel.
However, about two-thirds of the target-panel had more than
20 years of experience.

Most of our panelists and target-panelists experienced more
than one position in more than one company. We did not
find it meaningful to show just e.g., their last job, or the
longest one. Experts expressed their opinion according to
their general knowledge of the domain, which was gained
through different professional experiences. According to our
view, this enriches the research, since experts were able to
judge the factors from different, highly qualified, points of
views, within the same sector, in the same country. With
respect to the financial year 2015, panelist represented banks
which have an aggregated net worth of 82% and revenues of

95% of the national sector. For banking information systems,
we mean all systems which supports banking operations in
different market segments (e.g., retail, corporate) and different
products/services (e.g., deposits, payments) and ERPs (e.g.,
risk management, communications). Concerns among banks
are quite similar, since architectural patterns are shared by
European banking regulations, or Local Standards as Abilab.

C. Data Collection and Analysis
The Delphi–like study took over a year for the four phases

(see Figure 1), which are described next. According to the
Mixed Methods approach, this research is composed of quali-
tative and quantitative approach. To develop the qualitative part
we spent the first three phases, to identify the items. Then, we
used a survey-based approach to validate the panel’s items by
a wider panel (target-panel).

The qualitative research started in October 2014 and lasted
until April 2015. The survey was a little bit shorter, from June
2015 up to November 2015.

Phase 1: Brainstorming. After collecting the demographic
information from our pool, and composing the panel, we
conducted a brainstorming round to elicit as many concerns
as possible. This phase was helpful to broadly understand
the problem and seek factors. It was an unstructured process,
where more than 50 items were solicited. Afterwards, exact
duplicates were removed, leaving 50 items. Finally, items were
combined and grouped by the authors.

Phase 2: Narrowing Down. In the second phase, further
iterations involved the panel to validate the items. Relations
among items and their grouping were discussed, also in an
unstructured way. Experts were asked to discuss the grouping
made by the authors of this paper and to redefine it, if needed.
Items were represented in sticky notes on a blackboard.
This helped the discussion over the items and their relations.
Afterwards, authors wrote down the items list, in the terms
discussed by the panel. Finally, the panelists discussed about
the target-panel composition and also proposed other experts
to invite.

Phase 3: Validation. The goal of the third phase was
to validate the items. The panel considered more than 30
factors but it came finally to an agreement about the 15 final
factors. Since we wanted to keep the whole process rather
phenomenological, we did not use any statistical technique.
Typical Delphi studies ask panelists to rank factors according
to their importance and then aggregate it through Kendall’s
coefficient of concordance (W) to assess the degree of con-
sensus among the panelists themselves [18]. We had a narrow
group of highly qualified experts and managed them as a
working group. The introduction of statistical methods for
the validation of the final items was not grounded in our
phenomenological approach. We wanted to grasp the essence
of their experiences as described by the participants [9]. At
the end of this phase, each panelist agreed on the final items
and full consensus was reached, even though there were some
little differences. For instance, the panelists did not always
agree on the degree of consensus (i.e., strongly agree or just

646666

agree). However, the baseline (i.e., agree) was always met
for each item. This is probably due to the fact that both
brainstorming and narrowing down phases involved a lot of
personal confrontation. Therefore, during the validation phase,
there was already a consolidated opinion about the items.
Finally, some demographic information about the target-panel
was collected.

Phase 4: Evaluation. The last phase concerned the quan-
titative inquiry approach, to evaluate the factors by a larger
stratified sample group (target-panel). We prepared an on-
line survey with the factors and made personal invitations
to experts. Target-panelists could start the survey only after
they inserted their personal credentials, given by e-mail or
phone. To have control over the research and the randomized
stratified sampling, no answer was anonymous. We used an
hybridized-Likert scale for the factors evaluation. The aim
was to compute semantic differentials (i.e., “Strongly Agree”,
“Agree”, “Disagree”, “Strongly Disagree”) to define the level
of agreement, typical of Likert scales [22]. We hybridized the
Likert scale with even bipolar values (negative and positive),
symmetric to 0, without an average effect. To stress possible
differences, we gave higher values to both extremes, also to
avoid an average effect. So, we assigned the following values:
“Strongly Agree”= 3, “Agree”= 1, “Disagree”= -1, “Strongly
Disagree”= -3. The idea was to highlight different semantic
values of the two extremes and suggest equidistance between
the center point of the scale and the two extremes.

IV. RESULTS OF THE DELPHI–LIKE STUDY

The Delphi–like study resulted in a set of 15 factors
presented in Table III along with the target-panel evaluation.
All concerns were shared, at least, by 70% of the target-
panelists with a different intensity degree (measured with the
hybridized-Likert scale). Each factor is summarized followed
by a short discussion where panelists’ and target-panelists’
opinions are directly quoted. For the sake of readability, only
in this section, we use the terms panelist, target-panelist,
informants and experts as synonyms.

Factor 1: Module interfaces complexity.
A Banking Information System is characterized by a high

number of modules which are highly coupled. This increases
the number of interfaces and their complexity. One panelist
mentioned the spaghetti like architecture stating that “we are
experiencing a growing complexity in delivering new projects
due to past implementation of point-to-point architectures
delivered in the last years”. Integration costs and higher
complexity compared to a green field makes the business case
less effective. Even worse, another one said that “sometimes
the interfaces to be updated are so complex that an ad hoc
middleware is required”. The lack of knowledge seems to be
another root cause since a third panelist said “I believe that
the lack of knowledge about application functionalities led to
code duplication over the years”.

Factor 2: Interfaces architecture complexity.
This second factor is a direct consequence of the first one.

Module interfaces complexity led to a typical anti-pattern [23].

Question
“Agree”
and
“Strong
Agree”

Average
score

1

Software modules interfaces are character-
ized by a high level of complexity and
represent an important part of each module
in terms of number of objects and LOC.

96% 1,95

2

Interfaces among modules are developed in
a stratified way in time. This brought to
a complex architecture hardly manageable
and not future-proof.

96% 2,47

3
Software quality for custom development
is decreasing in the last years (especially
Cobol / CJCS / DB2).

77% 1,15

4

SW Maintenance & enhancements evolution
costs and time of information systems are
increasing due to the (i) stratification of
software, (ii) poor documentation and (iii)
low quality of the source code.

82% 1,58

5
Low software quality depends on increas-
ing pressure for enhancements evolutions in
shorter time with lower budget.

79% 1,57

6
Low software quality depends on a poor
level of functional and technical analysis
and detail.

79% 1,00

7 System analysis is hindered by an inade-
quate documentation and database. 87% 1,70

8
It is difficult to build and maintain effective
documentation because of low budget and
time shortening.

84% 1,46

9

New software packages have more function-
alities than in the past but their increased
complexity leads to difficult evolution man-
agement.

83% 1,58

10 Software packages are poorly documented
for effective maintenance and evolution. 82% 1,30

11

Software packages documentation main gap
is due to a poor description of the data
managed by the system (not only the record
layout, but also the fiscal and logical data
model, the data dictionary, etc.).

77% 1,09

12 “Application Maintenance” contracts do not
improve the software documentation. 77% 1,15

13
Non-Italian software applications are of
higher quality but are not per se more
maintainable.

76% 1,29

14
Italian software applications have more
functionalities and lower quality but are not
less maintainable.

75% 0,92

15 Software quality can not be reliably mea-
sured through tools and methodologies 70% 0,93

TABLE III
FACTORS AND RESULTS OF THE DELPHI-LIKE STUDY

According to a panelist, “stratified software interfaces affects
old developed applications; only using Service Oriented Archi-
tectures we took advantage of the strong benefits related to an
integrated architecture”. Old layered software is a remarkable
problem as stated by another panelist “there is a well known
problem related to platform software, which were developed
years ago and never replaced. Only a tactical update with
a short run perspective” was carried out. Continuous update
of old layered software seems an attractive and affordable
way, but long-term sustainability is questioned. Most concerns
were related to the maintainability of such architecture. No
refactoring solution was seriously taken into consideration,

656767

due to cost. However, this short-term view did not decrease
costs because the it is very probable that the system will stop
working properly in a medium period and the replacement cost
could be very high. Moreover, this leads also to unexpected
problems which usually rise with such complex systems. A
third panelist said “we decided to replace the client data
module and their interfaces, since we reached a point where
we were unable to manage the evolution required by the
business”. Due the high degree of coupling of these modules
(Factor 1), proper reverse engineering is required.

The next factors will show how the lack of documentation
hinders reverse engineering. All these elements make it diffi-
cult to improve the banks information system.

Factor 3: Custom software quality.
Apparently, the quality of custom software applications is

decreasing. Moreover, modules developed with old program-
ming languages like COBOL, which are still widely adopted
in banking, while there is a lack of young experts because such
languages are not included in the current formal IT education
programs. A panelist illustrated that “the number of developers
able to develop in COBOL are rapidly decreasing due to re-
tirement. New developers are not skilled enough with COBOL
and other mainframe languages because they are focused on
the newer languages like Java”. The interaction among old and
new coding paradigms is another point raised by the panelists.
One said that “software quality is getting worse because we
developed using a stack paradigm, adding new software layers
on old software. Unfortunately this paradigm prevents the use
of new technologies”. Furthermore, the decrease of quality
“is perceived also in all other used programming languages”
according to other panelists. This may be also depend on
the current training of developers. According to one expert
“several developers we hired did not go through a formal
computer science education”. This may be due to the high
request on the job market of software developers who however
get low salaries. So, skilled developers have usually many job
offers and tend to choose the most profitable one.

Factor 4: Increase of maintenance costs.
Some factors have a direct impact on maintenance costs.

The overall architectural complexity, the decreasing software
quality and incomplete documentation are the most important
drivers of high maintenance costs and time. As declared by a
panelist, “during the last six years our software modules have
been impacted by a deep reengineering project and the most
important effort was related to building new documentation”.
Another reason of the growing costs seems to be linked to
skills: a panelist pointed out poor competences as primary
cause of frequent module rebuilds that cause an increase in the
application complexity. This is related to the use of different
technologies “it often happens that instead of updating the
software, new applications are built on it. The coexistence
of different technologies is an important cause of high main-
tenance costs”. According to one panelist “most costs are
related to continuous regulatory changes requested i.e. by the
ECB”. This is, apparently, another element of stratification and
architectural complexity.

Factor 5: Quality vs. Time & Budget.
The whole panel agreed unanimously that there is a direct

relationship among quality and time and budget. One expert
stated that “a relevant cause of poor software quality is
related to time constraints, these aspects have impact on
quality”. More time and budget to develop and evolve software
properly would increase quality and decrease maintenance
costs. In fact, “an already well-written code could be evolved
with low budget, while a stratified software which has been
poorly written makes updating difficult, increasing costs and
time”. This is a chain-effect, one said that “poor software
quality is related also to software stratification due to low
investments and the obsolescence of the information system.
Poor implementation of software engineering methodologies
due to low budget magnifies this crucial issue day after
day”. Another element which emerged is the relationship
between the organization structure of banks and its impact
on the information system. One panelist stated that “it is
of high relevance the organization structure of the customer
to define the proper information system”. Apparently, this
element impacts on the quality of the system itself.

Factor 6: Quality vs. System analysis.
Even though the design phase is perceived as the most

important up-front activity, it is poorly implemented. One
panelist stated that “it is necessary to invest in this phase,
to get benefits within the whole life-cycle”. However, “it
is poorly carried out, due to shrinking budget and time”,
said another informant. The problem may depend on the
fact that often the role of IT departments is not perceived
as highly critical by top management. So, “there is not an
adequate collaboration between business functions and the
IT departments”. Therefore, system analysis activity is often
skipped because it is hardly tangible. Stakeholders are not
willing to invest in some activities were they do not see an
immediate return. Clearly, this leads to long term problems, as
identified before. Another element is the that the formalization
of the business requirements and a complete and effective
vision of the information system is difficult. In this regard,
one panelist affirmed that “customers usually give poor and
not coordinated requirements, leading to silos-like solutions
instead of a fully integrated development”.

Factor 7: System analysis vs. Documentation.
Inadequate documentation impacts on the system analysis

and so on software quality. One expert stated that “docu-
mentation is inadequate to the scope, being or too technical
or too business-like with poor information abut the system”.
Moreover, a wrong interpretation of Agile methodologies
results into poor documentation, in fact “along with the
stratification problem the misleading interpretation of Agile
led to a poor and ineffective documentation”. It is important
to underline that the lack of data models documentation and
metadata definition “leads to an inadequate and dangerous
system analysis”.

Factor 8: Documentation vs. Time & Budget.
Time and budget constraints have a direct impact on soft-

ware documentation. Due to low budget for new developments

666868

and urgency for new applications, documentation is the first
element which is skipped A panelist said that is impossible
to keep documentation aligned with software both for the
frequency of software update and the lack of methodologies
used to develop and manage software. According to another
panelist, “constraints on project costs and time causes poor
or no documentation. In fact, the documentation is usually
delivered only if you have enough budget”. Due to budget
limitation, often banks prefer to skip documentation if they
are offered a discount on the application cost. Also time plays
an important role. Often, there is no time for documentation
or, even worse, it is perceived as a waste of time. A panelist
explained that “budget constraints clearly impact on docu-
mentation, since we are not able to justify the budget required
to keep documentation aligned. The only affordable way is
to insert control points on the software development process
(SDLC) to define the least amount of information necessary
for maintenance”. In this regard, documentation tools appear
to play an important role. Another panelist declared that “we
can limit the problems that we have in software documentation
thanks to the adoption of new generation tools (thanks i.e. to
metadata) and the Agile approach”.

Factor 9: New packages functionalities vs. Complexity.
For the reasons analyzed before, the demand for more

functionalities rose in the last years, along with their com-
plexity. Moreover, software vendors do not always apply
industry standards. One panelist explained that “new software
packages requires methodologies and standards that only few
big vendors can adopt. In this situation when we want to
customize those packages we must rely on those big vendors
but with a low degree of control and the danger of lock
in”. Some experts also said that “recent packages are too
complex and have lower quality than in the past”. This factor
explains the relationship between the market trend i.e., more
functionalities with architectural complexity (factor 2) and
dependency on vendors (factors 10-12).

Factor 10: Packages vs. Documentation.
The lack of documentation for software packages is per-

ceived as a “commercial strategy of suppliers to lock-in cus-
tomers”. This appears natural, since “the development is often
given to software houses”. For one expert “documentation is
always lacking” and it is not uncommon to “buy packages
without any kind of technical and functional documentation”.
Another reason may be the fact that “suppliers tend to hide
technical documentation as IPR protection strategy, delivering
only the functional documentation”. However, as another
expert said, “this problem needs to be tackled with a good
Service Level Agreement”, according to an expert.

Factor 11: Packages documentation vs. System analysis.
The lack of documentation in packages impacts directly

on the logical data model and quality controls. As stated
by a panelist “information about data is one of the biggest
problems, as well as the role that data plays on business lines”.
Moreover, “process logic is needed to achieve a correct level
of documentation. Just data are not enough”. Also this factor
suffers from low budget and scarce time.

Factor 12: Application & Maintenance contracts vs.
Documentation.

Application & Maintenance (AM) contracts are set to out-
source the development and maintenance, to decrease inter-
nal costs. Typically, they do not provide an adequate docu-
mentation. Therefore, when the supplier is changed, system
evolution becomes rather difficult. Lock-in situations are very
common since “suppliers want to defend their know-how to
maintain their competitive advantages”. Like factor 10, “a
good Service Level Agreement is key to overcome problems”.
However, what happens is that SLA are not respected properly,
to get higher discounts on services.

Factor 13: Non-Italian applications vs. Quality & Main-
tainability.

According to the panel, there is a difference between Italian
and non-Italian software products, which is partially a concern.
Apparently, non-Italian applications are more maintainable but
have less functionalities. The reason seems to be that “non-
Italian applications are less flexible than Italian ones because
they implement simpler functions and not because they are
written or designed better”. One panelist stated that for a
well known, specific software application “a low level of
customization usually means lower license and maintenance
costs”.

Factor 14: Italian applications vs. Quality & Maintain-
ability.

Regarding Italian applications, they appear to have more
functionalities but incur in higher maintenance costs. For one
panelist the reason seems to be that “Italian applications
are really rich of functionalities due regulatory requirements
defined by the Italian Banking Authority”. One expert clearly
expressed a specific concern, stating that “software appli-
cations should comply with international standards. Before
the acquisition each customer has to test this compliance. In
reality this never happens, and if it were the case most would
fail. The only exception are applications delivered to NASA,
US Air Force and so on, but at which costs?”.

Factor 15: Measurement of software quality.
Losing the control over the system quality is a concern. First

of all “poor use of software engineering methodologies is the
first killer of quality”, according to one panelist. According
to another expert “even though methodologies are well known
and some tools are available, they are not implemented within
the software development process”. The discussion about
tools was quite interesting. “Tools do exist but are extremely
expensive and not suited for small banks” stated one panelist.
For another informant “a tool suited for us do not exist on
the market place, so we built it by ourselves”. Finally, an
expert very frankly explained that “tools and methodologies
are well known, however neither customers nor suppliers use
them since none is willing to pay for them”.

V. DISCUSSION

The picture which emerges from our research is rather wor-
risome. The information systems of Italian banks appear to be
characterized by a highly complex and stratified architecture,

676969

with a sinking quality. Moreover, with respect to the past,
experts’ opinions let to emerge gloomy scenarios, due to an
increase of functionalities set both by newer regulations and
the current “digital transformation”. The highly specificity of
any bank business led to a large use of custom applications and
software packages which in turn led to a hardly manageable
architecture with an unjustified stratification of software mod-
ules and interfaces. Integrated solutions products, which may
assure a more standardized quality, are rarely used because
they do not fit all the banks requirements.

Cost cutting had a direct impact on architectural aspects
(both ex-ante planning and ex-post analysis/reverse engineer-
ing), documentation and data modeling. These aspects are
directly related to quality, since they directly impact the
stakeholders of the software systems. However, traditional
quality models, appears to be insufficient to explain these
outcomes.

Even though this is a vertical study focused on a specific
sector and country, we can assume that several issues are
shared with other countries (especially EU ones). Cost-cutting
needs are the same at least for EU and US banks due to
the market low interest rates level. This reduced sensibly
bank’s margins and profitability, leading to generalized internal
cost-cutting. Development was influenced by such business
goal by delivering with lower budget (and time due to fast
regulatory changes). Since custom applications as software
packages implemented in Italian banks are comparable with
other Eurozone’s banks, this is a common feature.

The effort of this research was to map the identified
characteristics within state of the art standards. Most of the
15 factors we identified are included in the Product Quality
Model of the standard ISO 25010:2011, as shown in Table
IV. To map our factors to sub-characteristic we used a Delphi
approach derived from software cost estimation [24]. Each
author elaborated autonomously the categorization. After that
phase, we met personally and took for granted the unanimous
cases. All other cases where also just one of the author
was in disagreement were discussed. Since the factors which
came out from the panel where rather cross-cutting along
different quality characteristics, we assigned some factors on
more than one characteristic. We choose not be restrictive in
our categorization since the aim was to see if the standard
is sufficiently comprehensive for the identified factors. Final
factor mapping as described in Table IV is the unanimous
results of the iterations of all authors. This reflects both
perspectives from industry and university.

Although we mapped all factors, still some dimensions
remain unexpressed. We found that the dimensions of experts’
concerns are not all considered within the standard. For
example, the documentation cost aspect seems to have been
neglected in the standard. Moreover, in the literature there are
no systematic methods or models to measure cost [25].

Apparently, a meta dimension of quality emerged. Some
aspects like the relationship between cost and quality are not
part of the standard (both as Quality in Use and Product Qual-
ity), even though it has a direct impact on software quality.

Characteristics Sub-characteristics Factors

Functional suitability
Functional completeness 6, 7, 12
Functional correctness 6, 7, 12, 15
Functional appropriateness 3, 6, 7

Performance efficiency
Time behavior 5
Resource utilization 5
Capacity

Compatibility Co-existence 5
Interoperability 5

Usability

Appropriateness recognizability 7
Learnability 8
Operability 3, 9
User error protection
User interface aesthetics
Accessibility

Reliability
Maturity 8, 15
Availability
Fault tolerance 7
Recoverability

Security

Confidentiality
Integrity 2, 7, 15
Non-repudiation 15
Accountability 2, 7, 15
Authenticity

Maintainability

Modularity 1, 2, 10
Reusability 4, 8, 9, 10, 13 14
Analysability 4, 5, 6, 8, 9, 10, 11, 12
Modifiability 2, 4, 5, 8, 10, 11, 12
Testability 4, 5, 8, 10

Portability
Adaptability 4, 8, 9, 10, 13, 14
Installability 10, 13, 14
Replaceability 4, 6, 8, 9, 10, 11, 12, 13, 14

TABLE IV
FACTOR MAPPING ACCORDING TO ISO 25010

Experts stressed in more than one factor this emergent dimen-
sion. Shrinking budgets and lack of development time impact
directly on both architecture and software quality, according to
our panelists. The nearest concept of the ISO standard within
the Quality in Use is efficiency, intended as “resources spent
in relation to the accuracy and completeness with which users
achieve goals”. But our experts never expressed an efficiency
dimension. They reported about the relationship between time
& budget on software and architecture.

Business goals have a direct impact on the information
system. If the business (i.e., the bank’s executive board) has
as its goal the IT cost-cutting in order to invest this savings
in other departments or to be more profitable the next quarter
is a clear business goal. Short term-view decisions or even
not-taken decisions are business goals which influence both
software and architecture. Apparently, non-IT executives are
willing to pursue short-term goals, increasing both the total
cost of ownership and the technical debt. We did not collect
non-IT experts’ opinions in our study, so we can not explain
this phenomenon. Like the panelists remarked, this led to
low maintainability & evolution capabilities as also to some
architectural anti-patterns. Several quality dimensions are in-
fluenced by such business goals, like quality, maintenance &
evolution and architecture. It is like this meta dimension of
quality, impact on all the others e.g., Use, Data and Product,
Architectural Concerns, which have been already formalized
within industry standards (ISO 25010 and ISO 42010).

Therefore, we do not induce (intended as the outcome of
a qualitative research) another quality dimension. We induce

687070

Fig. 2. Meta Quality dimension

instead a new meta quality dimension of software.
Architectural aspects were continuously stressed by our

informants, letting emerge a relationship between business
goals with both software quality and architecture. Apparently,
this meta quality dimension impacts architectural concerns
as intended by the standard of architectural description. Ac-
cording to ISO 42010 “a concern pertains to any influence
on a system in its environment, including developmental,
technological, business, operational, organizational, political,
economic, legal, regulatory, ecological and social influences”.
In our study, business goals define architectural concerns, on
which software architectures are built on. For example, the
business goal to save on development influences the “system
in its environment”.

In our view this new dimension origins from the business
goals and structure of an organization, following Conway’s
law [26]. It changes along with the organization’s evolution.
This is the main reason that it is definable as a meta dimension,
since it changes over time. But, at the same time it impacts
on quality, in all its sub-dimensions.

In literature this idea is not new, even though it was never
observed with inductive approaches [27]. A meta quality
model which defines the structure of operationalized quality
models which bridges the gap between concrete measurements
and abstract quality aspects (i.e., ISO 25010) has recently been
proposed, starting from the standard incompleteness [27]. Such
approaches narrow down quality dimensions in quality metrics.
What differs mostly from this approaches is the incremental
versus the holistic view of this attribute. We do not think
a narrow definition of quality sub-characteristics into quality
metrics solves the issue of system’s quality. However, there
has been maturing in literature the idea of the inadequacy of
ISO standard’s quality characteristics.

Our contribution is that of a typical qualitative, inductive
study to have reported the emergence of a new dimension
which has not been observed before in a real-world context.
The proposed model is represented in Figure 2 and it links
both ISO 25010 standard regarding software quality, as also
ISO 42010 about architecture description.

A. Threats to Validity

Threats to validity were our biggest concerns during this
study, since we used a new inquiry methodology through
Mixed Methods. Therefore, we use both qualitative and quan-
titative validity paradigms. To analyze the qualitative dimen-
sion we adopt: credibility, transferability, dependability, and
confirmability, according to [28]. While, for the quantitative
dimension we use traditional statistical conclusion, internal,
construct, and external validity by [29]. Even though validity
dimension of qualitative and quantitative research are different,
we aggregated them but discussed them separately due to epis-
temological reasons. The research was homogeneous and both
qualitative and quantitative dimensions gained trustworthiness
one from another.

Credibility & Internal. Factors identified are all credible.
We identified them through Delphi-like process which last
about one year. Panelist were sector experts, with a daily
exposure to the researched concerns. The whole panel had the
chance to discuss, refine and group the elicited items, through
different phases. None of the experts argued that any of the
factors should be excluded. Random stratified assignment of
the research subjects, were designed to maximize internal
validity. Representativeness of the sample is high for two rea-
sons. Experts were chosen among a highly qualified pool of an
established IT consulting firm of the bank sector. Strata were
first assumed by the author’s experience and than integrated
into the panel. Moreover, the guarantee of anonymity given
to both panelists and target-panelists allowed a unbiased and
frank discussion. This increased the credibility of the study,
since experts were able to answer and express openly their
knowledge.

Transferability & External. The Mixed Methods approach
aims to explore and build new theory (induction) and also
to validate it (deduction). The degree to which the results
of qualitative research are transferable to other settings may
be interesting. However, we were strictly focused on a very
specific sector in one country. We believe that most concerns
are shared among other countries, for the reasons before
described. This study helps the community to identify the most
important factors which threaten the IT banking sector.

Dependability & Construct. The authors of this research
are well aware of the context. Experts were carefully chosen
through a stratified randomized sampling, using the impor-
tant pool of an established IT consulting firm, specialized
in the banking sector. We described the three dimensions
(experience, company and role) and sub-dimensions, as also
stratification of the samples. At the end of the qualitative
research, a very wide target-panel of 124 carefully selected
experts through stratified randomized sampling were asked to
evaluate the panel’s outcome. The outcome was a substantial
agreement, on all factors with a degree of agreement above
70% for all factors, with high average scores. However, even
though the presented 15 concerns were highly shared among
target-panelists, this does not mean that these are the most
relevant for them. Moreover, some elements may have been

697171

lost during the translation from Italian into English. We remark
that the factors were elaborated by a high level panel of expert
in a three-phase round. The aim of the quantitative part was
to verify the construct. So, we fully comply with our Mixed
Methods approach.

Confirmability & Statistical conclusion. All items were
discussed within the first panel, through different phases,
which led to a continuous check. After the whole qualitative
research process, factors were evaluated by a large target-panel
composed of 124 experts. We computed our results with MS
Excel and representative sample sizes to increase statistical
power. Moreover, measures and treatment implementation are
considered reliable.

It was concluded that the threats would not to be regarded
as critical. As we know, there is a constant trade-off between
internal and external validity [29], and our sampling strategy
took this into account. With Mixed Methods we aim to
get useful insight for theory building (external validity and
transferability), while we also try to validate it within the same
study (internal validity and credibility).

VI. CONCLUSIONS

The picture which came out of our research about the
Italian IT banking sector is worrisome. A short-term vision
drives the strategy about the maintenance and evolution of
banking information systems. Our Mixed Methods study used
a qualitative Delphi-like methodology to identify 15 concerns
which were validated through a survey of a broad target-panel.
Concerns were mapped within the ISO 25010 standard. A new
meta quality dimension emerged from our inductive research
approach regarding the Italian IT banking sector. This meta
dimension impacts directly both on the architectural drivers
and also on software quality, finding a link between ISO 25010
and ISO 42010 standards.

Further research will go on in three main directions. Mixed
Methods research is needed to better define meta quality and
validate its impact on information systems. Methodological
and technical solutions have to be researched to cope with the
problems we found. We plan to carry out a similar research
at European level, in order to understand how the identified
factors impact on other banking information systems.

ACKNOWLEDGMENTS

This research has being partially funded by the Consorzio
Interuniversitario Nazionale per l’Informatica (CINI) and the
Italian National Research Council (CNR-ISTC). The authors
thank all the panelists for their time and care in answering to
our questions.

REFERENCES

[1] J. Creswell, Research design: Qualitative, quantitative, and mixed meth-
ods approaches. Sage, 2013.

[2] D. Shepherd, K. Damevski, and L. Pollock, “How and when to Transfer
Software Engineering Research via Extensions,” in Proc. 37th Int. Conf.
on Software Engineering, ser. ICSE, 2015, pp. 239–240.

[3] N. Gorla and S. C. Lin, “Determinants of software quality: A survey
of information systems project managers,” Information and Software
Technology, vol. 52, no. 6, pp. 602–610, 2010.

[4] J. Tian, “Quality-evaluation models and measurements,” IEEE Software,
vol. 21, no. 3, pp. 84–91, 2004.

[5] N. Gorla, T. Somers, and B. Wong, “Organizational impact of system
quality, information quality, and service quality,” The Journal of Strate-
gic Information Systems, vol. 19, no. 3, pp. 207–228, 2010.

[6] S. Kan, V. Basili, and L. Shapiro, “Software quality: an overview from
the perspective of Total Quality management,” IBM Systems Journal,
vol. 33, no. 1, pp. 4–19, 1994.

[7] B. Slife and R. Williams, What’s Behind the Research?: Discovering
Hidden Assumptions in the Behavioral Sciences. Sage, 1995.

[8] C. Cherryholmes, “Notes on pragmatism and scientific realism,” Edu-
cational researcher, vol. 21, no. 6, pp. 13–17, 1992.

[9] C. Moustakas, Phenomenological research methods. Sage, 1994.
[10] P. Ciancarini, D. Russo, A. Sillitti, and G. Succi, “Reverse engineering:

a european ipr perspective,” in Proc. 31st Annual ACM Symposium on
Applied Computing, 2016, pp. 1498–1503.

[11] ——, “A guided tour of the legal implications of software cloning,”
in Proc. 38th Int. Conf. on Software Engineering, ser. ICSE, 2016, pp.
563–572.

[12] M. Krafft, K. Stol, and B. Fitzgerald, “How Do Free/Open Source
Developers Pick Their Tools?: A Delphi Study of the Debian Project,”
in Proc. 38th Int. Conf. on Software Engineering Companion, ser. ICSE,
2016, pp. 232–241.

[13] T. Chow and D. Cao, “A survey study of critical success factors in agile
software projects,” Journal of Systems and Software, vol. 81, no. 6, pp.
961–971, 2008.

[14] J. Brancheau, B. Janz, and J. Wetherbe, “Key Issues in Information
Systems Management: 1994-95 SIM Delphi Results,” MIS Quarterly,
vol. 20, no. 2, pp. 225–242, 1996.

[15] R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, “Identifying software
project risks: An international Delphi study,” Journal of Management
Information Systems, vol. 17, no. 4, pp. 5–36, 2001.

[16] E. Doke and N. Swanson, “Decision variables for selecting prototyping
in information systems development: A Delphi study of MIS managers,”
Information & Management, vol. 29, no. 4, pp. 173–182, 1995.

[17] U. G. Gupta and R. E. Clarke, “Theory and applications of the Delphi
technique: A bibliography (1975–1994),” Technological forecasting and
social change, vol. 53, no. 2, pp. 185–211, 1996.

[18] R. Schmidt, “Managing Delphi Surveys Using Nonparametric Statistical
Techniques,” Decision Sciences, vol. 28, no. 3, pp. 763–774, 1997.

[19] C. Okoli and S. Pawlowski, “The Delphi method as a research tool:
an example, design considerations and applications,” Information &
Management, vol. 42, no. 1, pp. 15–29, 2004.

[20] R. Judd, “Use of Delphi methods in Higher Education,” Technological
Forecasting and Social Change, vol. 4, no. 2, pp. 173–186, 1972.

[21] J. Creswell, V. Clark, and L. Plano, Designing and conducting Mixed
Methods research. Wiley, 2007.

[22] P. Lavrakas, Encyclopedia of survey research methods. Sage, 2008.
[23] W. Brown, R. Malveau, H. McCormick, and T. Mowbray, AntiPatterns:

refactoring software, architectures, and projects in crisis. John Wiley
& Sons, Inc., 1998.

[24] B. Boehm, C. Abts, and S. Chulani, “Software development cost esti-
mation approaches–a survey,” Annals of Software Engineering, vol. 10,
no. 1-4, pp. 177–205, 2000.

[25] J. Zhi, V. Garousi-Yusifoğlu, B. Sun, G. Garousi, S. Shahnewaz, and
G. Ruhe, “Cost, benefits and quality of software development documen-
tation: A systematic mapping,” Journal of Systems and Software, vol. 99,
pp. 175–198, 2015.

[26] M. Conway, “How do committees invent,” Datamation, vol. 14, no. 4,
pp. 28–31, 1968.

[27] S. Wagner et al., “The Quamoco product quality modelling and assess-
ment approach,” in Proc. 34th Int. Conf. on Software Engineering, ser.
ICSE, 2012, pp. 1133–1142.

[28] E. Guba, “Criteria for assessing the trustworthiness of naturalistic
inquiries,” Educational Communication and Technology Journal, vol. 29,
no. 2, pp. 75–91, 1981.

[29] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer
Science & Business Media, 2012.

707272

