Teaching Test-First Programming:
assessment and solutions

Marcello Missiroli and Daniel Russo and Paolo Ciancarini
DISI, University of Bologna
Email: {marcello.missiroli,daniel.russo,paolo.ciancarini } @unibo.it

Abstract—Developing high quality software is a major industry
concern, since programs that “just work” may not be suitable
to contemporary technological challenges. Agile practices, such
as Test-First development (TFD), may help in this direction.
However, in our experience this technique is introduced late (if
ever), when programmers’ habits are already set and difficult
to change. Early exposure to TFD in formal education could
be an answer to that, but putting the principle into practice
poses unexpected challenges. In this work we examine the
short- and long-term impact of young programmers’ exposure to
TFD, highlighting its limits and proposing a reinforced teaching
approach.

Index Terms—Test-first development, Education, K-12

I. INTRODUCTION

Test-First Development (TFD), sometimes also called Test
Driven Programming or Test Driven Development, is one
of the main practices used in Agile development. It is a
three-step process: first, write the test-case; then write the
(minimal amount of) code that passes the test, then refactor
the code. Repeat the process until satisfied with the result.
Despite its name, TFD is not a testing technique, but a
programming/design practice.Though the debate is still open,
it is generally assumed [1] that programming Test-first results
in more maintainable, flexible, easily extensible code, as
well as greater test overage — resulting in better quality;
sometimes, but not always, it is counter-balanced by slightly
lesser productivity [2].

Due to recent changes to school worldwide (e.g. in the
UK [3]), and suggestions from teachers, the age at which kids
start coding continues to decrease. Hence, we developed our
idea of introducing TFD as early as possible in programming
courses for young students to verify its effectiveness.

We performed a series of tests on more than 100 high
school students learning to program in various Italian schools.
We report the results of the early exposure of this technique,
considering the code produced and the subjective point of
view of the students, even after a long period of time. We
conclude that TFD teaching is not as simple as we envisioned;
we therefore propose a teaching strategy to facilitate the
introduction of this practice to beginner programmers.

This paper has the following structure: Section II summa-
rizes the related literature on both education and Agile devel-
opment; Section IIT outlines the general research methodology
we used; Section IV shows the results of code analysis and
student surveys; in Section V we present a summarized version
of field observations and reflective interviews; in Section VI

we collect all the information of our researches in a synthetic
way and propose a teaching strategy; finally, in Section VII,
we draw our conclusions.

II. RELATED WORK

Research on TFD-TDD in the upper education context
shows unclear results. Muller [4] notices neither higher pro-
ductivity nor reliability, even though students were exposed to
a full XP course. Kaufmann [5] directly compares two groups
with different programming methodologies; TFD seems to
produce more code, and all students received better grades.
Yaha et al. [6] explain that groups with mixed, moderate
and high programming competency produced better quality
code whereas lower competency groups did not. Bowyer [7]
states that all students succeeded in the TFD experience, but
reflection on the process was insufficient and inconclusive.
Erdogmus [8] obtained less bugged code, due to the increased
number of tests. Therefore, Jones’s conclusion [9] that TFD
cannot be considered as a “Silver bullet” for improving code
quality still holds.

Problems in teaching TFD are studied thoroughly by Mu-
gridge. He suggested that more than one semester is needed
for teaching test-first [10] and he points out that students are
“reluctant to set aside the way they currently program” [11],
displaying a sort of Baby-duck syndrome [12].

We found no specific work on TFD in high schools, if we
exclude very basic elements of the practice in [13].

IIT. RESEARCH DESIGN

In this section, we describe the methodology used to design,
plan and execute our research.

In accordance to the foundational aspect of this study, we
chose a research methodology which enabled us to explore
several research dimensions: learning outcomes, satisfaction
and opinions. We identified Mixed Methods (MM) [14] as
the research strategy most suited to our needs, particularly due
to the educational context. MM allowed us to join qualitative
and quantitative results in order to obtain a comprehensive
interpretation and is widely used in software engineering [15],
[16], [17], [18].

We then formalized our research questions:

« RQI1: Does TFD have any effect on the learning process?

e« RQ2: Does it impact the way inexperienced students
code?

o RQ3: Will this experience have long-lasting effects on
students?

To do so, we used two distinct research methodologies in
order to fully exploit the benefits of the methodology. Specifi-
cally, we used qualitative and mixed research methodology to
address the above questions.

The mixed research section provides the basis of our in-
vestigation. The first part consists in a code analysis (IV-A),
directly addressing RQ2. It compares code produced by the
students during an experiential learning event featuring TFD
with that realized for similar projects developed in a traditional
manner. Code is evaluated using standard, well-established
code metrics. The second part (IV-C) refers to students’
feedback on the above experiences, related to RQI. It took
the form of a post-mortem online questionnaire, without direct
teacher supervision.

In the first part of the qualitative section we report the results
of the field observations recorded during the two events (V-A,
V-B). The focus was on the general mood, possible tensions
and student interaction, also related to RQI1.

The second part of the qualitative section consists in a
reflective interview with students after a significant amount
of time has passed since the experiment (V-C), to check for
long-lasting effects and opinion changes. We call that “post-
burial” interviews, and is reltated to RQ3.

At the end of all the above procedures, we collated and syn-
thesized the results in the Discussion section (VI), answering
the research questions.

IV. CASE STUDIES
A. Code analysis

We follow the experiment methodology proposed by
Wohlin, et al. [19]: Design, Selection, Procedures, Data col-
lection, Analysis, Plan validity, Study limitations.

1) Design: The object of this study is exploratory in nature.
We want to understand if the introduction of a radically differ-
ent methodology in teaching programming changes not only
quantifiable elements, such as basic productivity, and code
quality metrics, but also how the methodology is perceived
(and possibly accepted) by the learners. We had therefore
to acquire codebases of similar size, scope and difficulty
developed both with TFD and traditional methodologies. We
then examined them according to standard metrics. We also
needed data on the opinions of the students on the new
methodology. As a selection strategy, we referred to our
own experiment [20],[21] and its repetition on other subjects,
performed one year later, that offered a reasonably reliable
source of the data we needed.

2) Selection: The context of the experiment was the stu-
dents of the next-to-last year of Computer Science course in
Italian Technical School for Informatics (ITIS - Informatics).
Our choice of this kind of school is due to the extremely
focused curriculum on Computer Science - about 13 hours a
week, or 30% of the weekly school time. As a result, students
of 12th grade have a programming knowledge comparable to
mid-year college freshmen. Overall, we tested 105 students in
5 classes over a period of 2 years.

B. Procedures

We extracted the codebase data from the experiment pre-
sented in [20], taking into account only data related to Test-
First Development. The Agile codebase was created during
a three-hour long experience using Java. First, a training
session introduced Agile methodologies and TFD in particular,
immediately followed by a hands-on experience. During the
next two hours students performed a variant of the Tennis
Game Kata [22]. They were given a sequence of JUnit tests
(see Appendix), used both as a guide and as acceptance tests;
they were forced to follow the sequence of 8 JUnit tests
exactly, and had to stop after a few steps for refactoring. This
method is a variation of the most used strategy to introduce
TFD to professional — the teacher provides the test, the
learners resolve it. The evaluation was based on the amount
of passed tests.

As an added bonus, our study partitioned results according
to ability (Good, Average, Poor) and team composition (Pair,
Solo) allowing for a detailed and unaggregated analysis.
Classes were partitioned by the class teachers using the
following guidelines:

e “Good” (G) students, whose average grade is 7 or more
in the Italian ten-point grading system (roughly equates to
US B grade and above, or 71% of the maximum score);

o ‘““Average” (A) students, who are “more or less sufficient”
(51-70%);

o “Poor” (P) students, struggling with the subject. Average
grade is 5.5 (50% or less).

We then formed six types of pairs, combining student types:
G+G, G+A, G+P, and so on. Solo team were simply labeled
by ability (G,A,P).

When the experiment was repeated the following year, some
variations were introduced:

o The difficulty of the test was sensibly raised;

o We only had pair teams, instead of both pairs and solo
programmers;

o The test was not graded in any way;

o Three schools were involved instead of a single one.

Though the experiment was performed under controlled cir-
cumstances, TFD was not the only change that was introduced.
We cannot exclude that the effects of multiple changes could
interact. For this reasons, we consider the data acquired as
second degree data.

The baseline codebase was acquired with the help of the
class teachers. A suitable, recently executed lab exercise
with characteristics similar to those of the experiment were
collected. As the data was acquired without direct interaction,
we consider them as second degree data.

Next, we had to define how to measure the quality of the
software. This is very difficult in general [23], and espe-
cially so in case of elementary algorithms. Since there are
several metrics that can be applied to software, we decided
to separately analyze three “classic” code metrics: cyclomatic
complexity (CC) per source code file, total number of non-
commenting lines of code (NCLOC), and programming issues
(ISS). Other metrics where collected but later discarded, as

they were clearly not suitable for simple programs developed
by unexperienced programmers.

As further evaluation parameters we added the number tasks
completed by the team (TC), and the overall quality indicator
SQALE [24]. With the exception of TC, all values were
calculated by Sonarqube [25].

1) Data Collection.: Collecting the codebase for the first
experiment was already done for our previous work [20] .
During the second experiment we simply followed the same
protocols used before.

2) Absolute Data Analysis.: Table 1 shows the overall
results of the code analysis. As we were not interested in
differences between teams of different size, we grouped Solo
programmers’ results with the Pair of the same ability group
(G with G+G groups, and so on). We then examined the
different metrics, one by one.

CC average/file. We have an average Cyclomatic Complex-
ity value of 17.93, almost twice the value of the codebase, in
all skill groups and pairings.

ISS/project. There is an general increase in programming
issues, though there are marked differences in skill groups.
For example, G+A and G+P display some decrease of issues,
whereas A+P groups show a dramatic increase.

TC & NCLOC. The overall number of lines of code
produced is generally higher that in the codebase. Especially
so in case of students that have at least one “Good” student.
Though it might be debatable whether NCLOC is an indication
of productivity or inefficiency, the TC metric clearly indicates
that teams writing more code also solved the most tasks.

SQALE index average/project. Again, no great difference
can be seen overall. There is a small increase of quality in the
case of G+P groups.

We were rather surprised with these results. TFD is sup-
posed [26] to produce slightly less code, but of better quality.
In fact, our results proved the exact opposite. Our interpre-
tation is that classic code quality indicators are not suited to
evaluating quality in elementary programs. For example, an
IDE-generated boilerplate program with minimal alterations
rates high both as SQALE and CC, but its real contribution
to the project is minimal. Conversely, a code that solves the
complex TieBreak task has intrinsically a larger CC value, also
resulting in worse SQALE value and creating potentially more
issues. Refactoring also has limited impact on such simple
programs.

It seems that our basic model of applying standard metrics
to this type of codebases was flawed.

3) Relative Data Analysis.: Since the above analysis proved
inconclusive, we decided to directly compare results of code
produced in the two installments of the experiment, since they
had very similar requirements and constraints.

In this case the data show a significant positive trend related
to code quality on two important metrics: CC and SQALE.
More specifically, as Table II shows, overall CC was better by
about 15%, showing no preferences for ability groupings.

If we exclude A+P and P+P groups, a large percentage
of which delivered empty or a low quantity of code that,
consequently, had good CC and SQALE scores, the result still
shows a significant improvement. Since the main difference

between the 2014-15 and 2015-16 run was the introduction of
a robustness test, this analysis shows how the experiment is
sensitive to how it is built, and at the same time how students
respond to problem presentation and conditions.

C. Student Feedback Survey.

As a further element of our investigation, we discuss if the
experiment was deemed useful in terms of learning experience.
We again followed Wohlin’s methodology [19].

1) Research Participants and Data Gathering Tools.: As
part of our previous work, we designed an Experiment Feed-
back questionnaire for all students who participated in the
experiment, aiming at determining how the new methodologies
were received at a psychological level. In particular, we wanted
to determine if the programming experience was pleasant and
useful. In almost all questions we used a standard 5-level
Likert-scale. We pointed out that no personal information
was required, and in particular no information would be
forwarded to the class teachers, to preserve student privacy.
The same questionnaire was reused, with minimal differences
in wording and eliminating a redundant question, for the
second experiment. In both cases, the collected data can be
considered as first degree data.

2) Research Process: The experiment feedback question-
naire was proposed to the students after the experiment was
over by using an automated survey tool, stating that it should
be completed within the week. The questions were the almost
the same for the two installment of the experience. The
response turnout was surprisingly high, 70% in the first run
and 55% in the second run.

3) Data Analysis: Results are displayed in Table III. On the
average, students think that TFD offers a good opportunity
to code more correctly, and find more bugs, in all cases.
However, the perception of usefulness is substantially higher
during the second experience, especially in questions related
to debugging.

If we analyze this last result further, we notice that student
are polarized almost evenly in “lovers” and “haters” of this
practice, a fact which is not related to performance but rather
to group composition (groups with G students had more lovers
that haters).

D. Validity and Plan validity

1) Code Analysis.: The validity of the code comparison de-
pends on how close the problems tackled in the two problems
was similar, and how reliable were the conditions under which
the coding experience was executed.

The similarity between the baseline and the experiment
codebase was assured because the experiment was modeled
on standard competences acquired (and tested) as part of the
regular curriculum. Moreover, the problem was shown and
approved by the class teacher, confirming the suitability of
the problem. Regarding the reliability of coding conditions,
we concluded that they should not differ much from those
used during the experiment; the amount of time, the lab,
and the teacher were the same; only some psychological
condition posed a sort of social threats. During standard

TABLE I
ABSOLUTE CODE ANALYSIS

TC CC CC DIFF | ISS ISS DIFF | NCLOC | NCLOC DIFF SQALE SQALE
/group | (AVG) | v. base /proj | v. base /proj v. base (base)
G+G/G 5.42 17.88 +114.96% | 20.57 | +98.88% 95,57 +97.32% A- A-
G+A 6.33 23.40 +40.48% 14.30 | -10.55% 96.70 +44.67% B+ B+
G+P 2.20 21.20 +161.73% | 12.00 | -17.05% 50.50 -22.13% A- B+
A+A/A 2.80 15.14 +132.51% | 11.86 | +27.13% 51.00 -13.81% B- B+
A+P 2.80 17.55 +164.91% | 13.70 | +265.33% | 51.47 +59.59% A- A-
P+P/P 2.00 12.43 +70.77% 6.05 -40.52% 39.50 +6.60% A- A-
OVERALL | 3.76 17.93 +114.23% | 13.08 | +53.87% 64.12 +28.71% A- A-
TABLE II
RELATIVE CODE ANALYSIS
Average DIFF SQALE SQALE DIFF
CCffile | vs 2015 (2016) (2015) vs 2015
G+G/G 23.17 +2.96% AABBB ABAA unchanged
G+A 19.17 -8.73% AABBB BBAAA | unchanged
G+P 14.67 -41.33% AAA CA better
A+A/A 14.33 -36.30% AABC CAA worse
A+P 16.92 -9.78% | AAABCC ACA better
P+P/P 4.33 -78.33% AABB ABC better
AVERAGE 15.4 -28,58% B+ B- +
AVERAGE 17.83 -20,85% B+ B- +
(no A+P and P+P)
TABLE III
STUDENT FEEDBACK ON TFD COMPARISON
2015-16 2014-15

It was a positive experience

Agree (2.51)

Agree (2.71)

Our pair worked well

Agree (2.51)

Agree (2.98)

SOLO produces better code

Disagree (1.48)

Disagree (1.43)

SOLO produces more code

Disagree (1.40)

Disagree (1.51)

I learned something

Slightly agree (2.41)

Undecided (1.88)

Faster development time

No change (2.04)

No change (2.20)

Adherence to specifications

Better (2.5)

Better (2.5)

Code correctness

Better (2.9)

Better (2.52)

More efficient coding

Slightly better (2.47)

Undecided (2.37)

I will use agile practices again

Possibly (2.35)

Undecided(2.00)

I found more bugs

Strongly agree (2.84)

Undecided (2.32)

school activities the students had the pressure of the grade,
during the experiment they had the time limitation and the
need to use one or more unknown methods. After consulting
with the class teachers, we convened that these differences
would not produce significant variations in the final results.
Consequently, we can also directly compare results of the
first and second comparison to one another, since they were
obtained under the same conditions.

We now consider plan validity. We understand that it has
four aspects: Construct Validity, Internal Validity, External
Validity, and Reliability [19].

Construct Validity is under control. We used several, well
established and deterministic metrics to evaluate the code, and
we considered them separately in our analysis.

Threats to Internal Validity depend on how much the tasks

that originated the codebases were similar, the conditions
under which the coding experiment was executed, and how the

investigated metrics might be affected by some uncontrolled
factor. The cooperation with the class teacher assures that
both experiments were indeed similar and executed in similar
psychological and environmental conditions. The fact that
more than one Agile practice was tested at the same time can
be a threat to internal validity, but the impact was regarded as
limited. Hence, also this aspect was under control.

External validity for data related to the first experiment was
under control, since the population was drawn from different
schools and cities. In addition, all target classes were, in the
opinion of teachers, of average level.

Reliability was under control. Programming tasks were
based on standard curricula, all code metrics were well-
established and the tools used were open and free software.
Both codebases are available at https://bitbucket.org/marcello_
missiroli/agileschool_data.

2) Surveys: Construct Validity is under control. We used
several clearly defined questions and rated the responses using
a standard Likert scale.

Threats to Internal Validity are not high. While there was
no direct control on how the student or the teachers submitted
the forms, they had no incentive to cheat. So, we assume they
responded truthfully.

Threats to External Validity are under control. In the case
of the student survey, the population is a sample of the
typical student population, and the turnout was significantly
high (around 70%). Although we used a non-probabilistic
convenience sample, still the sample population is comparable
to a probabilistic stratified random sample. All students were
equally exposed to the experience and were representative
of the class. Moreover, since the population is so small
(and well known), the difference between probabilistic and
non-probabilistic sample techniques are very narrow. Thus
we consider validity under control. Raw analysis results are
available at the same URL stated above.

V. QUALITATIVE RESEARCH

We report the field observations related to the first and sec-
ond experiment installments and a summary of the reflective
interview with students. Our goal was to monitor the effects
of the learning experience on student mood, perception and
practice acceptance. All field observations were performed by
the first author.

A. Field observations during the first event

Impressions were simply observed, since we were mostly
interested in the overall class “mood and feel” created by
the activity. Additionally, some photos were taken. We noted
a significant tension in several cases. Some pairs and solo
programmers openly protested that they did not want to
participate, and refused to turn in results. In other cases we
noticed some arguing and confrontations. Finally, an A+A-type
pair even displayed evident bickering.

B. Field observations during the second event

This time we took extra care in observing non-standard
pairs, flagged as such by the class teacher. We also had two
cases in which, due to absences, the class teacher had to step
in and formed an unusual teacher-student pair.

General mood was sensibly more relaxed than the previous
run. For example, no pair failed to deliver the code, however
bad that might have been (except for technical reasons). No
open bickering was observed. Possibly this was due to the
clearer declaration of intent given before the start of the test.
Even the need to resort to their own laptops to perform the
test - due to last-minute lab unavailability - did not have a
noticeable impact on the students’ attitude.

The increased difficulty of the exercise had a visible impact,
especially in groups containing at least one Poor student. We
remark a couple “outliers” cases that might be of interest: an
A+P pair that had the best performance of all involved, due to
intrinsic motivation; a G+A with an exceptionally good student
that underperformed due to overcoding.

We note that, beside the cases noted above, students were
rather satisfied with the experience and did not feel stressed or
pressured, even those that did not perform too well. Teachers
confirmed a general “good mood” during the experience.

C. Post-burial interviews

As we were interested in long-term effects of the experience,
we performed a reflective interview with a selected number of
participants. We wanted to have a more detailed opinion with
respect of what we could deduce from online survey, and also
see if a one-shot experience could have long-lasting effects.

The interviews were performed in the period September-
October 2016, from 5 to 18 months after the experiment.
It was too difficult to contact all participants, as many had
left school. Therefore, we opted for a non-probabilistic con-
venience sampling according to how well the person fared
during the TFD tests. In all, 3-4 students for each class were
interviewed. Results show that:

e All students had a vivid recall of the experience, and
generally labeled it as ‘good’ or ‘interesting’. Most think
it will be useful in their programming job, but only as
“things get complicated, otherwise it becomes useless”.

¢ No student ever tried to apply TFD in subsequent projects.

« Students that succeeded in at least 40% of the test suite
felt confident they could write effective tests if they
needed to do so; student that had difficulties during the
experience stated they had “no clue, even on how fto
begin”.

« Refactoring was not internalized as an important concept
(only one student was able to tell what it was).

VI. DISCUSSION AND PROPOSAL

In this section, we summarize the results obtained in the
previous sections and discuss the multiple perspective offered
by the Mixed Method methodology to address the research
questions described in section III.

A. Discussion

The answer to RQ1 (“Does TFD have any effect on the
learning process?”) is yes, but this is not the end of it. If taught
properly, in a relaxed atmosphere, Test-First Development has
a good potential as a means of writing less buggy code, as
several studies in the industry and university level show. The
practice is generally welcomed by students and moreover it
can become an asset in the job market. It will probably not
influence code quality - at least at first.

The key factor is the word properly. We note that a
few subtle variations in the pilot experience resulted in sub-
stantial differences in results (code quality, task completed)
and perception. This suggests that particular care should be
taken in both the instructional and the exercise phase. In any
case, we point out the initial student evaluation on this new
programming practices remains divided.

Code quality does not seem to be affected, so we have to
answer negatively to RQ2 (“Does it impact the way young
programmers code?”). This might change in case of more
complex programs, but it requires further investigation.

Field observations also showed that psychological and re-
lational aspects are very important dimensions. Generally,
pairs with at least a “Good” student performed significantly
better than the others. We also note that the practice of
refactoring, very important in TFD, plays only a limited role
in this approach. One reason is that at this elementary level
refactoring does not have a significant impact. It is limited to
coding and naming conventions, optimizing loops, sometimes
algorithm choice. Major errors, such as repeated IFs, can be
easily spotted by the teacher as a part of regular teaching.
Moreover, we found that it is more efficient to write/suggest
a test that uncovers potential problems (such as code rigidity)
than abstractly define an indication of “acceptably good code”
based on metrics the students do not really understand and, as
we have seen, are not good indicators of elementary program
quality.

More troublesome is the negative answer to RQ3 (“Will
this experience have long-lasting effects on students?”). No
student actually tried to use TFD after the experience, even
when they they liked it and felt confident in its use. This
indicates that a serious rethinking of the way we teach TFD
is needed, noting that no established teaching methodology
currently exists.

VII. CONCLUSIONS AND FUTURE WORKS

In this work, we presented our research on the exposure
of young programmers to the TFD practice. Data collection
covered 17 months and involved more than 100 high-school
students. Results show that:

o TFD has limited, if any, positive effects on classic code
quality metrics - possibly due to the limited complexity
of the problem.

o TFD, if properly introduced, is perceived as a useful
technique in producing less buggy software and an inter-
esting development methodology, though its acceptance
is strongly polarized.

o Its long-term effects are limited to superficial knowledge
and a general impression of usefulness, but students never
really use the technique again.

We conclude that TFD, while generally useful, requires
considerable effort on the teacher part and substantial adap-
tation to be useful in a school context; this can also apply to
undergraduates, since the testing conditions are very similar.
Only so can it become an effective technique used with
continuity, not just a one-shot school curiosity. In any case,
“real” code refactoring is probably not useful in this context
and its introduction should be postponed until students are able
to design programs of significant complexity.

We are developing and testing a more systematic approach
to TFD teaching in schools and universities, which includes
Randori-like activities, PBL development, formal grading and
feedback.

REFERENCES

[1] B. 36, “Benefits of TDD.” [Online]. Available: http://www.base36.com/
2012/07/benefits- of - test-driven-development/

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
(10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

L. Williams, E. M. Maximilien, and M. Vouk, “Test-driven development
as a defect-reduction practice,” in Proceedings of the 14th International
Symposium on Software Reliability Engineering, ser. ISSRE ’03, 2003.
UK Government, “National Curriculum in England,” 2013.

M. M. Muller and O. Hagner, “Experiment about test-first program-
ming,” IEE Proceedings-Software, vol. 149, no. 5, pp. 131-136, 2002.
R. Kaufmann and D. Janzen, “Implications of test-driven development:
a pilot study,” in Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications. ACM, 2003, pp. 298-299.

N. Yahya and N. Bakar, “The analysis of programming competency
in test driven development,” in 9th Malaysian Software Engineering
Conference (MySEC). 1EEE, 2015, pp. 290-295.

J. Bowyer and J. Hughes, “Assessing undergraduate experience of
continuous integration and test-driven development,” in Proceedings of
the 28th Int. Conf. on Software Engineering. ACM, 2006, pp. 691-694.
H. Erdogmus, M. Morisio, and M. Torchiano, “On the effectiveness
of the test-first approach to programming,” IEEE Trans. Softw. Eng.,
vol. 31, no. 3, pp. 226237, 2005.

C. G. Jones, “Test-driven development goes to school,” Journal of
Computing Sciences in Colleges, vol. 20, no. 1, pp. 220-231, 2004.

R. Mugridge, B. MacDonald, P. Roop, and E. Tempero, “Five challenges
in teaching xp,” in Procs. Int. Conf. on Extreme Programming and Agile
Processes in Software Engineering. Springer, 2003, pp. 406—409.

R. Mugridge, “Challenges in teaching test driven development,” in Procs.
Int. Conf. on Extreme Programming and Agile Processes in Software
Engineering. Springer, 2003, pp. 410-413.

D. Draheim, “Learning software engineering with ease,” in Informatics
and the Digital Society. Springer, 2003, pp. 119-128.

P. Kastl and R. Romeike, “Towards agile practices in cs secondary
education with a design based research approach,” in Proceedings of the
9th Workshop in Primary and Secondary Computing Education. ACM,
2014, pp. 130-131.

J. Creswell and V. Clark, Designing and conducting Mixed Methods
research. Wiley Online Library, 2007.

D. Russo, P. Ciancarini, T. Falasconi, and M. Tomasi, “Software quality
concerns in the italian bank sector: the emergence of a meta-quality
dimension,” in Proceedings of the 39th International Conference on
Software Engineering, ser. ICSE ’17. IEEE, 2017.

P. Ciancarini, D. Russo, A. Sillitti, and G. Succi, “Reverse engineering:
a european ipr perspective,” in Proceedings of the 31st Annual ACM
Symposium on Applied Computing. ACM, 2016, pp. 1498-1503.
——, “A guided tour of the legal implications of software cloning,” in
Proceedings of the 38th International Conference on Software Engineer-
ing Companion, ser. ICSE "16. ACM, 2016, pp. 563-572.

M. Missiroli, D. Russo, and P. Ciancarini, “Agile for millennials: a
comparative study,” in Proceedings of the Ist International Workshop
on Software Engineering Curricula for Millennials, 2017.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

M. Missiroli, D. Russo, and P. Ciancarini, “Learning agile software
development in high school: an investigation,” in Proceedings of the 38th
International Conference on Software Engineering Companion. ACM,
2016, pp. 293-302.

——, “Una didattica agile per la programmazione,” Mondo Digitale,
vol. 15, no. 64, 2016.

E. Galliot, “Tennis game kata.” [Online]. Available: http://codingdojo.
org/cgi-bin/index.pl?KataTennis

B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of
software quality,” in Proceedings of the 2nd international conference
on Software Engineering. 1EEE Computer Society Press, 1976, pp.
592-605.

J.-L. Letouzey, “The SQALE method for evaluating technical debt,” in
Proceedings of the Third International Workshop on Managing Technical
Debt. IEEE Press, 2012, pp. 31-36.

G. Campbell, Papapetrou, and P. P, SonarQube in action.
Publications Co., 2013.

T. Bhat and N. Nagappan, “Evaluating the efficacy of test-driven devel-
opment: Industrial case studies,” in Procs. ACM/IEEE Int. Symposium
on Empirical Software Engineering, ser. ISESE *06. ACM, 2006, pp.
356-363.

Manning

