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Abstract. Complex and ephemeral software requirements, short time-to-market
plans and fast changing information technologies have a deep impact on the de-
sign of software architectures, especially in Agile/DevOps projects where micro-
services are integrated rapidly and incrementally. In this context, the ability to
analyze new software requirements and understand very quickly and effectively
their impact on the software architecture design becomes quite crucial. In this
work we propose a novel and flexible approach for applying machine learning
techniques to assist and speed-up the continuous development process, specifi-
cally within the mission-critical domain, where requirements are quite difficult
to manage. More specifically, we introduce an Intelligent Software Assistant, de-
signed as an open and plug-in based architecture powered by Machine Learning
techniques and present a possible instantiation of this architecture in order to
prove the viability of our solution.

1 Introduction

Software design can be partially considered as a decision making process, where the
architect translates the requirements into an architecture [4]. Therefore, the elicitation
and formulation of the “User Requirements” is well known to be one of the most critical
phases in an engineered software system. Before design, indeed, we need to fully under-
stand the users’ point of view, aiming at satisfying their needs and the expected quality
of user experience (UX). At the end, software design is not as much about building a
system which is technically perfect as one which is fully compliant with the customer’s
expectations [24]. Even though, during the past, automated frameworks which allow
architectural languages [16] and decision-centric architecture design methods [10] have
been extensively studied, very little has been done for practically assisting the continu-
ous development and design processes. Generally speaking, we support epistemological
innovation to pursue research goals in software engineering, like [7], [8].

In this work we propose novel approach for assisting the continuous development
process through algorithmic methods which are able to learn from experience, that is
according to previous Agile/DevOps iterations as described in [18]. At the best of our
knowledge we are not aware of any relevant research in this direction. Indeed, even
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Fig. 1. CDIA: the Continuous Development Intelligent Assistant

if previous scholars already explored assistance frameworks (like [2]), none of them
employed Machine Learning techniques aimed to automatize them. Other task-focused
approaches (e.g., requirements prioritization) have been carried out [1], [20] but with-
out a comprehensive approach with respect to the continuous development process or
considering third party integration [6] and their data quality [9]. Our goal instead, is
to improve developers’ productivity, and increase software artifacts value (in terms of
how much functionality they deliver) by automatizing the requirements analysis and
assisting the continuous development process in a comprehensive way.

Velocity is also a key issue for the mission–critical domain which has the urgency to
deliver fast safety–critical functionalities. The use of Machine Learning techniques for
predicting and summarizing useful information regarding the architectural design and
the impact of new requirements on the software code base is here essential to accelerate
the entire process and allowing the Agile/DevOps team to rapidly transform the model
into code.

Software architecture in the Digital Age and the role of the architect is undergo-
ing a deep rethinking [14], [11]. The evolution and challenges of software architecture
opened the door to Agile/DevOps methodologies as crucial asset to leverage continuous
development and architecting [17]. In fact, the urgency to continuously modify systems
designs leads to new approaches. The aim of this article is to show how a new Machine
Learning approaches in Agile/DevOps development can also support the continuous
development (providing useful hints to the Developer Team) along with the analysis of
systems requirements.

In this paper, we present the approach developed in a real working case study within
a governmental Agency (from now on “Agency”) which develops mission-critical ap-
plications, where an intelligent software assistant has been designed for (i) the require-
ments comprehension and analysis; (ii) providing useful information with respect to the
software design; (iii) predicting the impact of new requirements on the development
process and the code-base within an Agile/DevOps customized methodology.

The paper is structured as follows. In Section 2 we explain the context in which we
are developing our approach and motivate why solving this issue is crucial. Moreover,
the problem and the solutions are outlined along with an abstract representation of our



working solution. In Section 3 the formal model is presented: the architecture is de-
signed to be open and incremental, in order to add new machine learning models and
refine their interactions. To convince the reader about the viability of our approach, we
show a possible instantiation in Section 4. Finally, in Section 5 we summarize our work
and discuss some extensions we plan to add in the near future.

2 Problem definition

Continuous software engineering is more than adopting continuous delivery and con-
tinuous deployment: the goal is to take an holistic view of a software production entity
[12]. Empowering developers with an Intelligent Assistant is considered by the Agency
as a viable solution to manage the fast-changing scenario of its daily operations. The
Agency has strict constraints to develop and deploy mission-critical software in a fast
way, since the operational scenarios it has to face change rapidly. Security and resilience
is also a great issue, this is the reason why they are experimenting new antifragile frame-
works [27], [25]. Satisfying changing users’ needs is one of the top priorities of the IT
department, and optimizing the continuous development processes is vital for the ful-
fillment of its mission. A major problem repeatedly observed during this phase is the
inability of the development team (DT) to understand the language and the context in
which some requirements are described by the user and to follow good architectural
patterns along with the fast system evolution. A lot of effort and a number of differ-
ent approaches have emerged in order to deal with RE within the Scrum process. At
the beginning, an effective technique to understand requirements was to to write down
user stories in order to fix the scope of the requirements. One of the most important
devices supporting agile developments has been achieved by persuading the users to
define their requirements by a number of “user stories” which become a sort of domain
specific jargon that can be understood by both parties. However, users (Product Owners)
tend to use the same “jargon”, due to organizational routines [19]. The Agency refined
the traditional user story structure into a customized one: As <role> I want to
<functionality description> in order to <goal to pursue>.

Nevertheless, misunderstandings are still very common during Agile/DevOps and
mission critical development, especially during the first cycles, where developers are
usually unaware of the application context [27].

During the last years Knowledge Management Systems (KMS) and Data Mining
techniques have made their appearance in this context in order to extract and relate
semantic knowledge from user stories, hence facilitating the requirements engineer-
ing phase through disambiguation [28]. However, we argue that these techniques are
still very unripe and uncorrelated, without a clear understanding of their improvement
directions and future applicability. Furthermore, we remark that requirements disam-
biguation is just a single aspect of the continuous development process, which we try
to improve with a uniform but flexible solution.

We envision a single software system that can take part in the continuous develop-
ment process acting as a proficient assistant and interpreter who speaks the languages
of both the users and the developers (see Fig.1). The disruptive idea is that this complex
piece of software would not be a simple tool to analyse and correlate user stories, but



it would offer useful predictions learning continuously from previous interaction cycles
as shown to be fruitful in many other application contexts [21], [22], [23].

The key factor here is the ability to learn from the past, exactly like a human soft-
ware engineer would do and offers great insights during the continuous development
processes that are specific of the software which has been developing. A software envi-
sioned in this way, not only offers direct insights on what and how disambiguate some
requirements, but can also make faithful predictions about the design and development
processes (e.g., micro-services dependences, work/hours to commit, the price to pay,
the number of code lines to change). Indeed, if we assume that there is an recogniz-
able pattern among some requirements topics or typologies and the amount of work
or services dependencies which can satisfy these requirements, then a statistical model
would probably be able to capture it and such information would result in an extremely
valuable asset for planning the development cycle ahead.

3 Model formalization

In this section we provide a formal model architecture which defines the structural prop-
erties and the operational modalities of a Continuous Development Intelligent Assistant
(CDIA). We propose an open model extensible in a plug-in fashion along with a possi-
ble instantiation.

First of all, let us define the time factor as a variable T where we indicate a specific
point in time as ti with i ∈ [0, . . .∞) (zero stands for the starting time of the develop-
ment).

Then, let us denote a user story as s and a set of user stories as S. In our model
we assume for simplicity that the requirements are defined by user stories and at each
development iteration they came together as single set (or batch) of arbitrary size. More
formally, we can enumerate the set using S j with j ∈ [0, . . . ,∞), where 0 is the first
batch of requirements commissioned by the user. Note that each set can be of different
size. For simplicity, as often performed discrete-event simulation models (DES), we
represent time as a discrete variable which varies only when a new batch of user stories
arrives i.e., i = j.

For each story that has been proposed by the user s ∈ S we should also keep track
of the final and agreed user story that has been refined after a few feedback from the
software assistant or external consultations. We will refer to them as sr where r stands
for refined. Note that we have a one to one connection for each s and sr even if the story
hasn’t been changed or has been dismissed (in this case s = sr).

Each story s is defined by a series of attributes: let us use a function named attr()
that given a story s return its attribute. Note that |attr(s)| = k with k ∈ N, and k is the
same for each s. We need also a number of attribute which can describe the state of
the software at each development iteration (let us name it D j). We can use the same
function attr() defined before but in this case it accept as input the software state D j
at time j, where |attr(D j)| = z with z ∈ N. Note that the more attributes attr(s) and
attr(D) we insert in the model the more accurate may be the prediction.

As for the last essential step we can not bypass in our CDIA formalization, we
need to keep track of the inter-dependences among services and micro-services which



constitutes the functionalities of the developed software. We define the set of services Vi
with i varying with the development iterations. Let us also use a function named dep()
that given a set of services Vi return the dependences among them.

Now that we have all formal environment in place we can formulate the main CDIA
system as a series of plugins whose results combination can produce two different eval-
uation feedbacks, one for the Product Owner (PO) and one for the Developer Team
(DT) in order to assist the continuous development process as depicted in Fig.2. In this
work, we describe three main plugins (defined as Machine Learning models):

– Services Dependences Tracking Plugin (SDTP): This machine learning model
learns the relationships between services and requirements (in this case the user
stories and services {(S0, . . . ,Si−1), (V0, . . . ,Vi−1)}). Then, at iteration i (i.e time
ti), given a new batch Si returns a feedback to the development team (DT) regard-
ing the suggested changes among the services inter-dependences or the eventual
insertion of new services, actually guiding the continuous development process.
More formally, we would like to learn a set of parameters θ of a function d, such
that:

n,dep(Vi) = d(θ ,attr(Si)) (1)

That is predicting all the new dependences among the services after the imple-
mentation of the requirements Si and eventually suggesting the introduction of a
number of n new services. Note that in this case we apply the function attr to the
entire batch of user stories Si meaning that we compute attr(s) for each s and then
we aggregate the results.

– Development Changes Impact Plugin (DCIP): This machine learning model at
iteration i (i.e time ti) learns the impact on the development phase of accepted
user stories {(S0, . . . ,Si−1), (D0, . . . ,Di−1)} and, given a new batch Si returns a
feedback to the development team (DT) regarding the predicted changes impact on
the software (a more general introduction to this approach can be found in [15], [3],
[29]). More formally, we would like to learn a set of parameters θ of a function c,
such that:

attr(Di) = c(θ ,attr(Si)) (2)

That is predicting all the attributes that we expect the software to have after the
implementation of the requirements Si. Note that even in this case we apply the
function attr to the entire batch of user stories Si.

– User Stories Disambiguation Plugin (USDP): This machine learning model at the
development iteration i (i.e time ti) learns from previous proposed and accepted user
stories {(S0, . . . ,Si−1), (Sr

0, . . . ,S
r
i−1)} and, given a new proposed set Si, returns a

feedback to the customer (Product Owner or PO) regarding the possible changes to
apply it in order to minimize its ambiguity (for this plugin we took inspiration from
[13]). The more development iterations the software goes, the more accurate the
software assistant becomes. So, more formally, we want to learn a set of parameters
θ of a function f , such that:

sr = f (θ ,s) (3)

In this way we can then predict the corresponding sr given a new s which may have
never been seen before. Another possibility, more naive but still powerful would be



to learn a set of parameters θ of a function g, such that:

p(A|s) = g(θ ,attr(s)) (4)

that is returning the acceptance probability p(A) given the submitted user story,
along with some hints about the motivation (hidden in the structure of f ).

USDP

DCIP

CDIA

PO DT

n; dep(Vi) = d(θ; attr(Si))

attr(Di) = c(θ; attr(S))

SDTP
p(Ajs) = g(θ; attr(s))

. . .

Fig. 2. The Continuous Development Intelligent Assistant Design

The USDP and DCIP plugins are instrumental to the SDTP pluging, which can
suggest useful insights regarding the architectural changes (in terms of micro-services)
based on a new set of requirements committed by the Product Owner. Indeed, even
though the SDTP pluging, seems to be the most valuable in terms of assistance to the
continuous development process, a good prediction can not came without a profound
understanding about the actual requirements and how they effect the code which run
these micro-services.

4 Instantiation

In order to convince the reader about the feasibility of this approach, let us now formu-
late a possible instantiation of the formal model.

For the user story attribute we can define attr(s) as:

– target user class



– length of the story (number of characters)
– number of atypical words

Then, for the STDP plugin we can choose to represent the services in Vi and their
relationships as a directed graph in which the nodes constitutes the services and the
directed edges the dependencies of one service to another. So that, if node (i.e. service)
a as a directed edge towards b we can say that the service a depends from b. With this
formulation the function dep(Vi) can be instantiated simply as the connection matrix
(also called adjacency matrix) of the directed graph. Then, we can instantiate d as a
multivariate regression function, using a two layers (or more) artificial neural network
(ANN), where the output nodes are n2 +1 with |Vi|= n, meaning that we are trying to
predict the value of each edge in the current connection matrix, plus one real number
which is the expected number of new services to be introduced at time i. However,
we are aware that a larger number of (possibly semantic) attributes may be needed
especially in the case of more complex projects.

For the DCIP plugin we need first to define a set of aggregate attribute with can best
represent an entire batch of user stories. For simplicity, based on the only three attribute
we have defined for each user story, a possible instantiation for attr(S) could be:

– Number of user stories
– Number of different User Classes
– Average length of the user stories
– Average number of atypical words

Regarding the instantiation of attr(D) (which defines the impact on the development
phase of the new batch of submitted user stories), we may define three main attributes:

– number of new code lines to write
– number of new classes to implement in the code
– person-hours to allocate
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Fig. 3. Artificial neural network for the DCIP plugin



Also in case of the function c an Artificial Neural Network can be employed. Us-
ing neural networks for predicting future changes in the software is not new and, if the
architecture is properly tuned, this approach can lead to substantially improved results
[15], [3]. In Fig. 3, the ANN architecture designed for our problem instantiation is illus-
trated. It is a common two-layers neural network (also called Multi-Layer Perceptron)
where the xi neurons represent the input units and the hi the hidden ones (which are the
non-visible computational units, indispensable for learning an high-level representation
of the input data). Lastly, the output units oi, constitute the variables we would like to
predict.

Finally, let us consider for the USDP plug-in the strategy defined in eq. 4, where g
could be a classification tree. After the training we can obtain the acceptance probability
as described in [5] and understand why the user story has been classified in a certain
way by looking a the structure of the classification tree. Indeed, despite their simplicity,
classification trees are still one of the most used algorithms in machine learning due to
their efficiency and interpretability. An example of such learnable classification tree can
be found in Fig. 4.

is the user

a gov. official?

length story

> 245?

num. atypical

words > 12?

no yes

Accept

Accept Refuse

no yes

Refuse

yes no

Fig. 4. Learned classification tree for the USDP plugin

5 Conclusions and Future Works

In this paper we proposed a novel machine learning approach for automatically assisting
the continuous development. Along with the CDIA Intelligent Assistant formalization



we detailed a possible instantiation of the same in order to show the viability and po-
tential of our approach.

Even though the use of Machine Learning techniques is not novel in this field, we
believe this is the first study which proposes a theoretical framework and a systematic
approach for the deployment of an automated tool specifically designed for the contin-
uous development context.

We plan to extend this work releasing the extensive experimental evaluation we are
currently undergoing in order to show the potential of such a system in a real-world
mission-critical application.

Another interesting research direction we are planning to follow in the near future, is
to further extend our design infrastructure. The first step would be adding more plugins
(like explicit requisites prioritization as in [1], [20]) to the system.

The ideal development of CDIA would then proceed towards a fully comprehensive
and refined architecture in charge of the requirements automation and the entire contin-
uous development process: understanding relations and dependences of old function-
alities and new ones and help planning their interactions based on past Agile/DevOps
iterations or previous developed software which are similar to the one being developed.
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