
Benefits of Open Source Software in Defense Environments

Daniel Russo

Consorzio Interuniversitario Nazionale per l’Informatica (CINI)

dr.daniel.russo@gmail.com

Abstract

Even though the use of Open Source Software

(OSS) might seem paradoxical in Defense

environments, this has been proven to be wrong. The

use of OSS does not harm security, on the contrary it

enhances it. Even with some drawbacks, OSS is highly

reliable and maintained by a huge software

community, thus decreasing implementation costs and

increasing reliability. Moreover it allows military

software engineers to move away from proprietary

applications and single vendor contracts. Furthermore

it decreases the cost of long term development and

lifecycle management, besides avoiding vendor’s lock

in. Nevertheless deploying open source software

deserves an appropriate organization of its lifecycle

and maintenance, which has a relevant impact on the

project’s budget that cannot be overseen. In this paper

we will describe some major trends in OSS in Defense

environments. The community for OSS has a pivotal

role, since it is the core development unit. With Agile

and the newest DevOps methodologies governmental

officials could leverage OSS capabilities, decreasing

the Design (or Technical) Debt. Software for Defense

purposes could perform better, increase the number of

the releases, enhance coordination through the

different IT Departments (and the community) and

increase release automation, decreasing the

probability of errors.

1. Introduction

This paper claims five main issues about the

benefits of the use of OSS in Defense environments:

Cost, Innovation, Delivery, Security and Agility.

Some of these issues appear pretty straightforward,

like the cost issue. In fact the use of OSS decreases (or

eliminates) contractor’s monopoly regarding the

exclusivity of the required capabilities. Furthermore

innovation is fostered, since Defense officials have

more time to focus on their core business and not to

code (which is done by the community). Similarly, also

the delivery is improved, because military software

engineers can focus on changes and integration of

existing software capabilities, instead of having to

redevelop entire software systems. Time management

is optimized to deliver new capabilities which relate

more with the core business. It has not to seem strange

that also the security is enhanced through a peer

reviewed and reactive community. Furthermore a broad

access to the source code enables software security

even after the release. Likewise, software development

is agile, since there is no copyright infringement (since

the OSS is licensed by the Defense agency or the

Government) so it is easy for all departments to use

clones (piece of codes) to set up their own systems,

without any copyright infringement. It is like a public

library, where any official can just pick what he needs

to build his system.

DevOps is a growing software engineering

methodology to assure a better integration of the

Development, Quality Assurance and Operations

Department, in order to optimize the quality and the

number of releases. This is, for instance, crucial in a

dynamic environment where features have to change

very fast (like a battle environment). Furthermore,

optimizing the releases decreases also the Design Debt,

which is very typical of Scrum methodologies.

After an explanation of the (ii) background, this

papers points out that the OSS community can lead to

enhance several benefits for software development (iii)

and software optimization through the newest

methodologies (iv). In conclusion (v) we suggest

further research in reference to the European defense

software development system.

2. Background

The debate about the use of Open Source Software

(OSS) in military programs is not new in literature [1].

Passively managed closed government programs,

developed mainly with a waterfall methodology, are

less flexible and less efficient than open source

systems. Thus, the Department of Defense (DoD) is

trying to shift through a more open Software

Development Approach [2]. Nevertheless there are two

main problems that arise: IPRs and National Security.

Usually, the government does not have the intellectual

rights to make it more open, having, maybe, only

purpose rights but not unlimited rights. Furthermore the

government wants to maintain a National Security

advantage by classify it, in order to not permit to others

to see/use it.

The real point behind these issues is the real trade

off, i.e. are the benefits greater than the drawbacks?

The answer to this question cannot be univocal; it

definitely depends from the organization and settings of

the software design. For example, we see an excellent

respond of using open architectures for modelling and

simulation (M&S) at NATO level [3]. Especially for

developmental environments, where interoperability

plays a major role (e.g. NATO) open architecture

seems to be a good solution in order to create a fully

respondent and effective environment (i.e. M&S).

Clearly we have to distinguish the level of

confidentiality and sensibility of every environment,

but especially for interoperability open architecture

seems to have a good respond. We find in literature

many case studies where openly-shared systems

address main issue of interoperability [4]. Using

Commercial-Off-The-Shelf products (COTS), in

defense environment has relevant cost savings effects

through economies of scale, this especially for non-

critical systems, such Special Test Equipment (STE)

for testing military avionics equipment. Therefore, the

potential cost savings due to COTS usage is

proportionately greater in STE than in the higher

volume avionics systems that are tested [5]. A second

major benefit of using COTS products is that test

system development schedule cycle time is greatly

reduced [5]. Even though the realization of flexible and

robust systems without a supporting architecture is

difficult, requires significant system rework, and

precludes the concept of a product line, still the use of

COTS seems to be worthy [6]. The use of Agile

development system is probably of the most

appropriate organization of software development

lifecycle and maintenance, which has a relevant impact

on the project’s budget. Especially in defense

environment “sustainability” is a major issue [7].

Successful software sustainment consists of more than

modifying and updating source code [8]. It also

depends on the experience of the sustainment

organization, the skills of the sustainment team, the

adaptability of the customer, and the operational

domain of the team. Thus, software maintenance as

well as operations should be considered part of

software sustainment [9]. We know, actually that the

majority of defense system lifecycle costs are incurred

after the system has entered operations. Operations and

sustainment costs can easily reach 60% to 80% of a

weapon system’s total lifecycle costs, depending upon

the type of system and the duration of its employment

[10]. DevOps, blurring the lines between software

development and operations teams, pushing continuous

integration even earlier in a product/system lifecycle,

seems a promising potential option for use in IT

systems and weapon and logistics support systems [11].

3. Benefits of OTD

As it is known, the Open Technology Development

(OTD) at the DoD has become reality and it is used to

develop military software. Software developers of the

community (i.e. not governmental officials) and

governmental developers, develop and manage

collaboratively software in a decentralized way [12].

Thus, OTD is grounded on open standards and

interfaces, open source software and designs.

Furthermore collaborative and distributed online tools

and technological agility enhances OTD.

These practices are proven and in use in the

commercial world. Likewise non-military

environments, the DoD is pushing for open standards

and interfaces that allow software to evolve in a

complex development environment. Therefore, using,

improving, and developing open source software might

minimize redundancy in the development and

maintenance process, fostering the agile development

of software. Not surprisingly the DoD uses open source

software also for critical applications, considered as

structural part of military infrastructure, especially in

four broad areas: (i) Security, (ii) Infrastructure

Support, (iii) Software Development, and (iv) Research

[2]. Collaborative and distributed online tools are now

widely used for software development. The private

sector also often strives to avoid being locked into a

single vendor or technology and instead tries to keep its

technological options open (i.e. using OSS). Removing

such OSS tools (e.g., OpenBSD) would mean to harm

crucial infrastructure components on which network (i)

Security relies on. Furthermore it would also limit DoD

access to the use of powerful OSS analysis and

detection applications that hostile groups could use to

help stage cyberattacks, as the general expertise in it.

Finally, the established ability of OSS applications to

be updated rapidly in response to new types of

cyberattack would be harmed. This is in part because

DoD groups use the same analysis and network

intrusion applications that hostile groups could use to

stage cyberattacks. The uniquely OSS ability to change

infrastructure source code rapidly in response to new

modes of cyberattack has been proven to be very

effective [2]. Therefore OSS has been proven to be

reliable for many DoD’s application, also in critical

and sensitive ones, like cyberattacks. Interestingly,

from an IPR perspective, the GPL (the most common

used license in the DoD) turns out to be surprisingly

well suited to use in security environments. This is

because of the existing and well-defined abilities to

protect and control release of confidential information.

The established awareness largely removes the risk of

premature release of GPL source code by developers

but, at the same time, developers make an effective use

of the autonomy of decision typical of the GPL license.

The (ii) Infrastructure Support depends on OSS, since

OSS applications rely on the ability of the DoD to

support web and Internet-based applications. (iii)

Software Development relies on the OSS community to

grab from the large pool of software developers, also

with specific skills in different programming languages,

directly outgrowths of the Internet. Finally, (iv)

Research benefits from OSS’s little support costs. The

unique ability of OSS to support sharing of research

results in the form of executable software is particularly

valuable for the DoD.

Like in any commercial - OTD environment, it is the

software community that has the proper access to

source code and designs documents across the

company interacts with the company itself. This creates

a decentralized development environment, leveraging

existing software assets. Not surprisingly, OTD

methodologies that have been used from OSS to open

standards architectures have their most successful

implementations from the direct interaction with the

end-user community. The only way to make an OTD

successful is, thus, the merging interest and inputs of

both developers and users.

Briefly, we will now highlight the most

controversial issues of OSS in security and defense

environments.

3.1. Security issues

A recent qualitative analysis showed that among

software security professionals, OSS is perceived as a

powerful defense tool against attackers [13].

Interestingly, no major issues were emphasized in the

close vs. open source comparison of the two software

paradigms in the context of vulnerability and risk

management. One relevant professional affirmed that it

is “...impossible to say which one is more secured and

has less vulnerability, look just at Borland [closed

source software] example that had a backdoor

password for many years. It was discovered only

recently” [13]. Among professionals there is the

common belief that the time to reach and fix the

vulnerability in open source security software is much

faster than closed source software, therefore more

efficient. Nevertheless it is also worthy to say that in

their opinion most of the closed source software is

generally better tested and contains less bugs and

vulnerabilities. What it is interesting to notice is that

having full access to the source allows an independent

assessment of the exposure of a system, like any peer

review system. Also the risk associated with using the

system makes patching bugs easier and more likely and

drives software developers to spend more effort on the

quality of their code, in order to be not blamed by the

community in which they have freely chosen to engage,

with an easy software quality assessment [14].

Even if we cannot affirm that OSS is more valuable

than close systems, we can, at least state that it has, for

many applications, the same dignity.

3.2. Cost issues

Even if OSS is free, this does not mean that is has

no cost. We can for sure argue that since it is breaking

vendor’s monopoly, it lowers lock-in costs. More in

detail we can say that there are some cases where the

use of OSS is cost beneficial, like in stable slow-growth

environments with a large number of software

installations the low purchasing and maintenance cost

of OSS can result in savings and thereby increased

profitability [15]. More in general we can state that

adopting OSS lowers cost and increase operating

efficiencies. Studies, like Spinellis et al. point out that

cost optimization is the main reason why large

organizations switch from close to open software [15].

Some academics also argue that, since the market will

provide companies with a closed system which is most

suitable for their needs in terms of flexibility,

technological sophistication, or ability to adapt

software to their specific needs, the major benefit of

OSS is the price [16].

3.3. Innovation issues

Open Source is basically a huge library where

everyone could pick what he needs. Pieces of code

from different programs can be assembled without

having to invent a new system from scratch or break

IPRs. Developers can rapidly assemble and modify

existing systems and components, focusing their time

and effort writing the code that takes standing

capabilities to a higher degree, or combines already

existing components into one integrated system. Thus,

programmers need to focus on changes and integration

of new and critical software capabilities. This form of

software reuse is called in literature software cloning

[17].

3.3.1. Cloning. There is a relevant debate in literature

about the advantages and disadvantages of cloning. In

table 1 we figure out the most relevant issues.

Table 1.

Advantages Disadvantages

Clones are useful if

different customers share

similar requirements [18].

High maintenance costs

[19].

Some programming

languages encourage the

use of tem plates, which

result in software cloning

[18].

Propagation of bugs: if a

clone contains an error, it

will spread rapidly over

other parts of the program

[20].

The use of clones can

respond, sometimes, to

efficiency requirements in

the development [21].

Cloning discourages the

use of refactoring, leading

to a bad design of the

system [22].

Using clones reduces the

time required to develop a

program [23].

Using clones increases the

size of the code, leading

to a less efficient system

[24].

Advantages and disadvantages of code cloning

4. Sustainable Software Development

Open source is not a panacea. There is and will

always be the need for software engineers to code, test,

deploy and operate. Open source represent a valuable

tool to e.g. overcome single vendor’s lock-in and

improve network security, among others. In a survey of

over 400 business executives conducted by the IBM

Institute for Business Value (IBV) it came out that

even if software development and delivery are felt as

“critical” by software houses, only 25 percent believe

their teams leverage development and delivery

effectively [25]. IBM called this, “execution gap,

which is basically the difference between the need to

develop and deliver software effectively and the ability

to do so. IBM concludes that this gap is causing missed

business opportunities for the vast majority of

companies. This image is useful to understand the

centrality of a sustainable software development.

Organizations that use OSS cannot override such

issues. Therefore it is important to understand the main

topics of software development in OSS integration.

Software development methodologies appear to be

more complex and mixed than just straightforward

techniques, as the 8
th

 Annual Survey on the State of

Agile suggests with 55% of prevalence of Scrum in

Agile [26]. Many implementations in execution appear

to be hybrids of Agile methods, with some traditional

methodologies, such as Waterfall. Such a hybrid is

usually called Water-Scrum-Fall, known also as a

flexible development approach that includes both

waterfall and Agile development principles [27]. The

point is that organizations, usually, utilize Scrum

software development techniques but employ

traditional waterfall methodologies for non-

development issues (e.g. planning and budgeting).

What often happens is a poor software design,

caused by different factors, like business pressure, lack

of deep system understanding by both developers and

business, lack of documentation or collaboration. The

technical (or design) debt can also be described as the

gap between the current state of a software system and

an idealized state in which the system is perfectly

successful in his environment [28].

Sustainable software development methodologies

can narrow this gap. This is possible through a tight

relationship and cooperation between customers and

producer but also between the development and the

operation department of a company. Agile

methodologies give some important answers to the

technical debt issue as also DevOps. Implicitly a

DevOps approach applies agile and lean thinking

principles to all stakeholders in an organization who

develop and operate. It balances development and

operation concepts with the aim of changing cultural

mindsets and leveraging technology more efficiently

[29].

5. Conclusions

In this paper we pointed out some major issues of

OSS integration within a Defense Environment. We

also highlighted that any integration cannot disregard

from sustainable software development.

Future research could take into consideration some

case studies within European Armies of OSS

integration. Even if we have some research about the

DoD, studying OSS implementation outside the US

could interesting to confront if the US represent a

specialty or they are in line with other Defense

Organizations.

Acknowledgments
I would like to thank Prof. Paolo Ciancarini for his

helpful remarks and continuous inspiration.

References
[1] Scott, J., Wheeler, D. A., Lucas, M. and Herz, J.C.,

“Software is a Renewable Military Resource”, DACS, 14(1)

2011, pp. 4-7.

[2] MITRE Corporation, Use of Free and Open-Source

Software (FOSS) in the U.S. Department of Defense, 2003.

[3] Hassaine, F., Abdellaoui, N., Yavas, A., Hubbard, P.,

Vallerand, A.L., “Effectiveness of JSAF as an Open

Architecture, Open Source Synthetic Environment in

Defence Experimentation”. In Transforming Training and

Experimentation through Modelling and Simulation, 11,

2006, pp. 11-1 – 11-6.

[4] Sawilla, R.E., Wiemer, D.J., “Automated computer

network defence technology demonstration project

(ARMOUR TDP): Concept of operations, architecture, and

integration framework”, Technologies for Homeland Security

(HST), 2011 IEEE International Conference on, 2011, pp.

167 – 172.

[5] Pizzica, S., “Open Systems Architecture solutions for

military avionics testing”, IEEE Aerospace And Electronic

Systems Magazine, 2001, 16(8), pp.4-9.

[6] Henry, M. Vachula, G., Prince, G.B., Pehowich,

J., Rittenbach, T., Satake, H., Hegedus, J., “A comparison of

open architecture standards for the development of complex

military systems: GRA, FACE, SCA NeXT (4.0)”,

Proceedings - IEEE Military Communications Conference

MILCOM, 2012, pp. 1-9.

[7] Defense Acquisition University, Sustainment Archived

References, 2013:

 https://acc.dau.mil/CommunityBrowser.aspx?id=677043.

Accessed on 10.04.2015.

[8] Lapham, M. A., Woody, C, “Sustaining Software-

Intensive Systems (CMU/SEI-2006-TN-007)”, Software

Engineering Institute, Carnegie Mellon University, 2006:

 http://resources.sei.cmu.edu/library/asset-

view.cfm?AssetID=7865. Accessed on 10.04.2015.

[9] Defense Acquisition University. Integrated Product

Element Guidebook. DAU, November 2011:

https://acc.dau.mil/CommunityBrowser.aspx?id=496319.

Accessed on 10.04.2015.

[10] Taylor, M., Murphy, J. “Colt. OK, We Bought This

Thing, but Can We Afford to Operate and Sustain It?”

Defense AT&L: Product Support Issue, March–April 2012,

pp. 17-21.

[11] Regan, C., Lapham, M. A., Wrubel, E., Beck, S.,

Bandor, M., “Agile Methods in Air Force Sustainment:

Status and Outlook (CMU/SEI-2014-TN-009)”, Software

Engineering Institute, Carnegie Mellon University, 2014.

[12] Herz, J.C., Lucas, M. and Scott, J., “Open Technology

Development Roadmap Plan”, April 2006, Office of the

Under Secretary of Defense for Acquisition.

[13] Silic, M., “Dual-use open source security software in

organizations e Dilemma: Help or hinder?”, Computers &

Security, 39, 2013, pp. 386-395.

[14] Hoepman, J. H., Jacobs, B., “Increased Security

Through Open Source”, Communications of the ACM, 50

(1), 2007, pp. 79-83.

[15] Spinellis, D., Giannikas, V., “Organizational adoption

of open source software”, The Journal of Systems and

Software, 85, 2012, pp. 666– 682.

[16] Attewell, P., “Technology diffusion and organizational

learning: the case of business computing”, Organization

Science, 1997, 3, pp. 1–19.

[17] Rattan, D., Bathia, R. Singh, M. “Software clone

detection: A systematic review”, Information and Software

Technology. 55, 2013, pp. 1165-1199.

[18] Kim, M., Bergman, L., Lau, T., Notkin, D., “An

Ethnographic study of copy and paste programming practices

in OOPL” Proceedings of 3rd International ACM-IEEE

Symposium on Empirical Software Engineering (ISESE'04),

2004, Redondo Beach, CA, USA, pp. 83-92.

[19] Monden, A., Nakae, D., Kamiya, T., Sato, S.,

Matsumoto, K., “Software quality analysis by code clones in

industrial legacy software”, Proceedings of 8th IEEE

International Symposium on Software Metrics (MET-

RICS02), 2002, Ottawa, Canada, pp. 87-94.

[20] Johnson, J.H., “Substring matching for clone detection

and change tracking”, Proceedings of the 10th International

Conference on Software Maintenance, 1994, Victoria,

British Columbia, Canada, pp. 120-126.

[21] Kapser, C.J., Godfrey M.W., “Cloning considered

harmful considered harmful: patterns of cloning in software”,

Empirical Software Engineering, 13, (6), 2008, pp. 645-692.

[22] Lavoie, T., Eilers-Smith, M., Merlo, E., “Challenging

cloning related problems with GPU-based algorithms”

Proceedings of 4th International Workshop on Software

Clones,2010, Cape Town, SA, 25-32.

[23] Kapser, C.J., Godfrey M.W., “Supporting the analysis of

clones in software systems: a case study”, Journal of

Software Maintenance and Evolution: Research and

Practice,18, (2), 2006, pp. 61-82.

[24] Koschke, R., “Frontiers of software clone management”,

Proceedings of Frontiers of Software Maintenance

(FoSM08),2008, Beijing, China, pp. 119-128.

[25] IBM, “The software edge: How effective software

development and delivery drives competitive advantage”,

IBM Institute for Business Value, 2013: http://www-

935.ibm.com/services/us/gbs/thoughtleadership/softwareedge

. Accesed on 18.04.2015.

[26] VersionOne, “8th Annual State of Agile Survey”,

VersionOne, Inc., 2014: http://stateofagile.versionone.com/.

Accessed on 15.01.2015.

[27] West, D., Gilpin, M., Grant, T., Anderson, A., “Water-

Scrum-Fall is the Reality of Agile for Most Organizations

Today: Manage the Water-Scrum and Scrum-Fall Boundaries

to Increase Agility”, 2011, Forrester Research.

[28] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M.,

Kruchten, P., Lim, E., Maccormack, A., Nord, R., Ozkaya, I.,

Sangwan, R., Seaman, C., Sullivan, K., Zazworka, N.,

“Managing technical debt in software-reliant systems”,

FSE/SDP Workshop on the Future of Software Engineering

Research, FoSER 2010, pp.47–51.

[29] Swartout, P., “Continuous Delivery and DevOps: A

Quick Start Guide”, Packt Publishing, 2012.

http://dodcio.defense.gov/Portals/0/Documents/FOSS/dodfoss_pdf.pdf
http://dodcio.defense.gov/Portals/0/Documents/FOSS/dodfoss_pdf.pdf
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sawilla,%20R.E..QT.&searchWithin=p_Author_Ids:38234141200&newsearch=true
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wiemer,%20D.J..QT.&searchWithin=p_Author_Ids:38114719400&newsearch=true
http://140.98.202.196/xpl/mostRecentIssue.jsp?punumber=6095473
http://140.98.202.196/xpl/mostRecentIssue.jsp?punumber=6095473
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Henry,%20M..QT.&newsearch=true
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Vachula,%20G..QT.&newsearch=true
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Prince,%20G.B..QT.&newsearch=true
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pehowich,%20J..QT.&newsearch=true
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Pehowich,%20J..QT.&newsearch=true
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Rittenbach,%20T..QT.&newsearch=true
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Satake,%20H..QT.&newsearch=true
http://140.98.202.196/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hegedus,%20J..QT.&newsearch=true
https://acc.dau.mil/CommunityBrowser.aspx?id=677043
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7865
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7865
https://acc.dau.mil/CommunityBrowser.aspx?id=496319
http://www-935.ibm.com/services/us/gbs/thoughtleadership/softwareedge
http://www-935.ibm.com/services/us/gbs/thoughtleadership/softwareedge
http://stateofagile.versionone.com/

