
Reverse Engineering:
a European IPR perspective

Paolo Ciancarini
University of Bologna & CINI
via Mura Anteo Zamboni, 7

Bologna, Italy
paolo.ciancarini@unibo.it

Daniel Russo
∗

University of Bologna & CINI
via Mura Anteo Zamboni, 7

Bologna, Italy
daniel.russo@unibo.it

Alberto Sillitti
Center for Applied Software

Engineering & CINI
Italy

alberto@case-research.it
Giancarlo Succi
Innopolis University

52 Peterburgskaya st.
Kazan, Russia

giancarlo.succi@innopolis.ru

ABSTRACT
Even if reverse engineering is a well known and deeply inves-
tigated activity in software engineering, little research has
been performed from an Intellectual Propriety Rights (IPRs)
perspective. In this paper, we analyze some cases of reverse
engineering in a IPR perspective; in particular, we survey
the behavior of the major European court about reverse en-
gineering. Apparently, legal fora have little attention for
copyright infringements regarding reverse engineering. The
major contribution of this work is an analysis case by case of
the European Court of Justice (ECJ). The ECJ looks very
permissive regarding reverse engineering, since “principles,”
or “ideas,” are not copyrightable by themselves. In partic-
ular we discuss the impact of a recent and relevant ECJ
ruling.

CCS Concepts
•Social and professional topics → Software reverse
engineering; Copyrights;

Keywords
Software Engineering; Reverse Engineering; Copyright.

1. INTRODUCTION
Reverse engineering is a common practice in software engi-
neering in order to understand how a piece of software works

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04-08, 2016, Pisa, Italy
c⃝2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851790

and let it to interoperate with other systems. The size and
complexity of computer programs are one of the greatest
concern of the software industry because of the huge mainte-
nance costs. Not surprisingly, the estimated cost of software
maintenance accounts for 50% to 75% of the overall cost of a
software system [10, 4, 3, 6]. Since many software companies
do not provide detailed information about how their systems
work (e.g., to prevent undesired alteration of the behavior
of the system, to keep a business advantage, etc.) experts
perform reverse engineering activities to disclose such im-
portant knowledge and use it for different purposes (e.g.,
integration with other systems, improvements, risk analy-
sis, etc.). Two are the most relevant activities for reverse
engineering [2]:

• Redocumentation, is the analysis of a system to repro-
duce documentation in various forms e.g.users manu-
als. The resulting forms are artifacts which are under-
standable by humans i.e., data flows. Apparently it
is the oldest form of reverse engineering and it is con-
sidered to be particularly unintrusive [2]. There are
specific tools for reducumentation to provide an eas-
ier way to visualize the relationships among program
components;

• Design recovery, is when external information is added
to the observations of the system to identify higher lev-
els of abstractions beyond those obtained directly by
examining the system itself. It recreates the design ab-
stractions from the combination of the available knowl-
edge about the problem and the application domain.
The aim of design recovery is to collect all available
information required to fully understand all program’s
functions. Therefore, it deals with much more infor-
mation than just representations of the code.

Furthermore, [2] proposes also other activities, strictly re-
lated to reverse engineering, namely:

• Restructuring, or the transformation from one repre-
sentation form to another at the same abstraction level

1498

http://dx.doi.org/10.1145/2851613.2851790

Table 1: Reverse engineering scenarios
Type Main characteristics
Achieving Inter-
operability with
other Software

Development of applications that inter-
operate with operating systems libraries or
applications

Legacy Software
Maintenance

Design legacy recovery when the source
code of modules is not available for main-
tenance

Software Quality
Evaluation

Preventive software quality assurance

Implementation
Testing

Verification of the forward development
produced code matches the design

while maintaining unchanged the functionality and the
semantics of the program;

• Reengineering, is both the examination and the mod-
ification of a system, to transform it in another form,
as its implementation.

There are, at least, four scenarios where reverse engineering
applies [7]; Table 1 shows them clearly.

A primary goal of reverse engineering is to produce software
views by abstracting facts stored in a knowledge base to
cope with new and emerging software development scenarios
and new system architecture [1]; however, little attention
was devoted by the research community in studying its legal
implications.

Software is an artifact protected in the EU by copyright
laws1. When dealing with any legally protected artifact, any
software engineer should be aware of the legal consequences
of reverse engineering. This paper explores the position of
the European Court of Justice (the highest court in Europe)
regarding this issue. Here, regardless of the personal opinion
of scholars, we analyze the position of the ECJ, in order
to understand and possibly predict future leanings of lower
courts in Europe.

The structure of this paper is as follows. In Section 2 a
short legal overview is given, to understand the main refer-
ence points of courts. In Section 3 we explain our research
methodology regarding the case law analysis. A manual
analysis of the case law was carried out. In Section 4 we
discuss a recent ruling of the European Court of Justice.
In Section 5 we discuss the main implication of this paper.
Finally, in Section 6 we summarize our main findings and
discuss some future work.

2. IPR IN THE EU
The ECJ has to apply the EU law. A particularity of the
ECJ is that it acts as a Supreme Court of several States with
(slightly) different laws. Each ECJ judgment is binding for
any court of each member state. The EU law system is
a mixture of the civil law and the common law systems.
Each court has to interpret the national law but the ECJ
rulings are binding2. The most common EU laws regarding
copyright are represented in Table 2.
1Protection of computer programs: Directive 2009/24/EC
2Please consider that this is a very rough approximation,
useful for the purposes of this article.

Table 2: EU Directives regarding Copyright
Directive Subject
Council Directive
93/83/EEC

Copyright and related rights: satellite broad-
casting and cable retransmission

Directive
98/84/EC

Protecting electronic pay services against
piracy

Directive
96/9/EC

Legal protection: databases

Directive
2001/29/EC

Copyright and related rights in the informa-
tion society

Directive
2001/84/EC

Resale right for the benefit of the author of an
original work of art

Directive
2006/116/EC

Copyright and related rights: term of protec-
tion

Directive
2006/115/EC

Rental, lending and certain other rights re-
lated to copyright in the field of intellectual
property

Directive
2009/24/EC

Legal protection: computer programs

Directive
2012/28/EU

Wider access to copyright material - Orphan
works

Furthermore, there are also EU Commission’s recommen-
dations, shown in Table 3. Even if these recommendations
are not formally binding, they are part of the EU legisla-
tion, since they elaborate a formalized position of the EU
legislative bodies.

Table 3: Commissions’s Reccomendations
Reccomendation Subject

COM (2004) 261
Management of copyright and related
rights in the internal market

Commission Rec-
ommendation
2005/737/EC

Management of online rights in musical
works

COM(2009) 532
final

Copyright in the Knowledge Economy

Reverse engineering in software, as such, is considered by the
EU Law an issue that underlies to copyright. Since software
is protected by copyright, all actions related to software are
part of the legal domanin of the copyright law.

3. CASE LAW PROTOCOL
A systematic review of law cases has some strong limitations
since there is no official database that collects all law cases.
Rulings are written by judges, after that employees of com-
mercial databases e.g., LexisNexis put them on line. So, it
is possible that some rulings are not into any database, this
happens usually with lower courts judgments considered by
the database editor of low importance or impact.

Moreover, a literature review in such context is very dif-
ferent compared to a Systematic Literature Review (SLR)
in the Computer Science domain. Law databases contain
technical keywords to help in the identification of the cases
but such keywords belong to the law domain and not to the
Computer Science domain. Therefore, the identification of
the relevant law cases is quite difficult and includes a high
number of manual inspections also related to the fact that

1499

interpretation is a key aspect of law.

The arbitrary dimension in the analysis of case law is in-
eluctable. Nonetheless, our main reference for the design of
our review protocol was [9], to stick as much as possible to
the empirical software analysis tradition. To systematize as
much as possible this study, we set up the following review
protocol:

1. identification of the country/legal system where to carry
out the analysis;

2. definition of an appropriate database for the case law;

3. definition of an appropriate query, according to the
legal system;

4. manual identification of the relevant cases:

(a) exclusion criteria: not relevance to the topic;

(b) inclusion criteria: relevance to the topic;

5. manual analysis of the relevant cases.

According to our protocol, we choose to analyze the EU legal
system’s on reverse engineering.

We used Eur-Lex3. Eur-Lex has the advantage of being
the official Law database of the European Court of Justice.
So, any judgment of the ECJ is available in the Eur-Lex
database.

The identified query was “software & copyright” in the tex-
tual search. We consciously have chosen a broad query, to
match also possible outliers. We used a query able to catch
the highest number of potential law cases regarding reverse
engineering, since it is considered by EU Law a sub domain
of copyright. The total output were 27 cases. The query
was carried out on June 3rd, 2015.

The outcome of the 27 cases for the EU was reproduced
in Appendix A. After that, they were manually analyzed
case by case. Cases discussing other topics were not taken
into consideration in the table. In total, the excluded cases
were 26. The remaining relevant case was then analyzed and
deeply discussed in Section 4.

3.1 Preliminary remarks on our dataset
The included cases are a large minority of the dataset. This
because the query was kept as general as possible to catch
most of the relevant cases.

We took just the EU cases, at its highest level of the ECJ.
The study of the US and other countries case law is of great
interest and we are committed to pursue this study further.
We remark that we only considered case law at EU level,
since each Member State has its own case law in its own
language. However, each courts of the member states has
to comply and respect the ECJ rulings. So this research is
significant for all Member States.

Interestingly, the ECJ set an important milestone with the
SAS Institute Inc. v World Programming Ltd. case, which
has several disruptive elements regarding copyright law, which
are analyzed in the next section.
3www.eur-lex.europa.eu

4. A RECENT RULING BY THE ECJ
In the EU, the paradigm about copyright of software changed
after the SAS Institute v. World Programming Ltd4 ruling
by the ECJ. This ruling has clear and strong implications
for software programs and related lawsuits. More in detail,
the ECJ stated three important principles about the inter-
pretation of Directives 91/250 and 2001/29:

1. The first part of this ruling states that the legal pro-
tection of computer programs is to be interpreted as
meaning that the functionalities of a computer program
and of a the programming language are not eligible, as
such, for copyright protection. It will be for the na-
tional court to examine whether, in reproducing these
functionalities in its computer program, the author of
the program has reproduced a substantial part of the
elements of the first program which are the expression
of the author’s own intellectual creation. This means
that a program’s features are “principles” or “ideas,” so
not copyrightable expressions by themselves. Software
program’s copyright is no more an absolute assumption
but a relative one. For sure programs are copyrightable
but in the sense that they are a form of expression of
the intellectual creation of the programmer.

2. Furthermore, in the most relevant part for our pur-
poses, regarding reverse engineering, the ECJ states
that it is not regarded as an act subject to authoriza-
tion for a licensee to reproduce a code or to translate
the form of the code of a data file format so as to be
able to write, in his own computer program, a source
code which reads and writes that file format, provided
that that act is absolutely indispensable for the pur-
poses of obtaining the information necessary to achieve
interoperability between the elements of different pro-
grams. That act must not have the effect of enabling
the licensee to recopy the code of the computer pro-
gram in his own program, a question which will be for
the national court to determine. [...] Acts of observ-
ing, studying or testing the functioning of a computer
program which are performed in accordance with that
provision must not have the effect of enabling the per-
son having a right to use a copy of the program to ac-
cess information which is protected by copyright, such
as the source code or the object code. This means that
anyone, who acquired a license of a program can freely
observe, study or test it to fix interoperability or for
education purposes. Any program, which has been ac-
quired legally, can be studied and the copyright holder
is not able to prevent it. Interestingly, even though
someone would study the program, to copy it, this
could not be considered a copyright infringement.

3. Finally, the last point, which is possibly less relevant
from our perspective, is the copyright of the user man-
ual. In fact, the reproduction, in a computer program
or a user manual, of certain elements described in the
manual for another computer program may constitute
an infringement of the copyright in the latter manual
if - a question which will be for the national court to

4C-406/10, 02.05.2012

1500

determine - the elements reproduced in this way are
the expression of their author’s own intellectual cre-
ation. Also for this case, the expression, original cre-
ation of the author, is protected by copyright law. Not
protected are keywords, syntax, commands and combi-
nations of commands, options, defaults and iterations
singularly, but the choice, sequence and combination of
such elements that the author may express his creativ-
ity in an original manner and achieve a result which
is an intellectual creation.

This judgment is clearly disruptive from the case law point
of view. Even though before this one there were no real case
law regarding reverse engineering issues, this sentence has
a big impact in the software community because it states
relevant issues that have a direct impact for programmers,
at least in Europe. With the C-406/10 ruling we can figure
out the following suggestions for programmers:

• it is possible to reproduce “principles” or “ideas” of
other people’s software programs;

• it is possible to get revenues from others’ “principles”
or “ideas,” because they are not copyrightable;

• “principles” or “ideas” are not copyrightable, so every-
one can get full inspiration from them;

• legal fora are not the right place where to defend“prin-
ciples” or “ideas” because no legal paradigm protects
them;

• European courts may intervene only if the program
code itself is copied;

• the source code of any program can be studied, with-
out any permission of the licensor for“study”purposes.
Therefore, if someone studies the source code of a pro-
gram to get its “principles” or “ideas” to exploit them,
no one can, de facto prevent it. Even though the court
deals with a case which regards reverse engineering
specifically for interoperability issues, it is quite easy
to go beyond this limit. In principle, any programmer
could claim to have“studied”it for interoperability. So,
even if nothing would come out (in terms of interoper-
ability) still the programmer could have been studied
the program, without any restriction. Finally, no one
could claim copyright issues if he gets “principles” or
“ideas” of that program, for his own program.

• it is legal to copy“principles”or“ideas”of any program,
even for profit.

5. IMPACT ON THE COMMUNITY
This paper describes the ‘way of thinking’ of EU courts when
it comes to reverse engineering in software and, more gener-
ally, to IPR issues.

For all EU Member States, the SAS Institute v. World Pro-
gramming Ltd ruling will have a disruptive impact regarding
reverse engineering. So, from academic, non profit or FOSS
application, up to commercial, closed source and business
applications, reengineering has to be considered, at least

Figure 1: Copyright protected and not protected
reengineering according to the ECJ.

permitted. Anyone can use “principles” or “ideas” of an-
other software artifact for the proper use. And no one can
legally claim an IPR protection if someone else exploit the
own original “principles” or “ideas” used in someone else ar-
tifact. If the software community in Europe wants to have
a more stringent protection about the software, European
courts (of all Member States) are not the suited place to get
this protection.

One big issue is the architecture visualization of a system
[5]. In literature, there are different visualization tools pro-
posal, to cope with the complexity of computer programs [8].
But to what extend, from a legal point of view, a software
engineer can apply these visualization tools to study and un-
derstand better the architecture of a program? Which kind
of authorization has he to ask for? According to the ECJ
the answer is simple: there is no limitation. Anyone can de
facto study the architecture for any purposes. First of all
for interoperability issues but also for education ones. This
means, basically everything. Furthermore there is no need
for any kind of permission to do that.

Furthermore, it is of highest interest interpreting in an op-
erative way the SAS ruling. The ECJ refers explicitly to
“principles”or “ideas”. So, direct derived work is still to con-
sider protected by copyright, since it is much more then not
just “principles” or “ideas” . The typical example is the re-
lationship of the source code and the object code, explained
in Figure 1. The object code O1 is automatically derived
by the source code S1, elaborated by a compiler. Therefore,
also the object code is protected by copyright, as it is an
automatic execution of a human creative activity, namely
the source code.

1501

Going ahead, what happens to an object code O2 which is
decompiled in a source code S2, which is slightly different
with regard to e.g., the identifiers? Is it still a copyright
protected artifact? The answer is yes. As the automatic
compilation, also the decompilation is an automatic and di-
rected process to get to a derivative product S2 from an
original S1 protected one.

But what happens is if the relationship is not automatic or
direct? Well, the answer is it depends. However, we can
reasonably state that if the change to the software exposed
to reverse engineering is not trivial and the new artifact X
follows just “principles” or “ideas” of S1, it is for the ECJ a
new artifact with no legal relation to S1 or S2.

Ultimately, the fine line between derived artifacts protected
by copyright (S2) or new one (X) inspired by the original
one, depends on the “degree of derivation”. If the derivation
is verry loose, and the X artifact recalls just “principles”
or “ideas” of S1, the ECJ would not claim any copyright
infringment. On the other hand, if this recall is more than
just a simply “inspiration”, well the ECJ would seen this as
infringment.

Unfortunately, there is not a easy answer to this issue. Since
we are dealing with courts, there will always be a degree of
arbitrarity. Nonetheless, we found out that copyright pro-
tection of software within the EU is relatively loose.

To sum up, the software engineer that has to reverse engi-
neer a computer program for education and interoperability
purposes, will always be protected by the ECJ and has not
to worry any legal action by the software owner. This, with-
out asking for any kind of permission. Moreover, there is
no worries of infringements if he wants to reengineer a soft-
ware, taking into account only “principles” or “ideas” of the
original one.

6. CONCLUSIONS
In this paper we analyzed the behavior of the ECJ regarding
software reverse engineering issues.

The European Court of Justice has a loose approach to copy-
right protection, regarding software. With the SAS Institute
v. World Programming Ltd ruling, the ECJ has been quite
disruptive for all Member States courts within the Euro-
pean Union, since it is a Supreme Court pronouncement.
The Court stated that reengineering of“principles”or“ideas”
can not be an infringement of copyright, since“principles”or
“ideas” are not copyrightable. Likewise, reverse engineering
is legally permitted, without asking for permission to the
software owner.

Since the SAS ruling by the ECJ is quite recent, there will
be in the next future new judgments by lower courts about
these issues. It will be interesting to see how future judg-
ments will evolve, after this supreme court judgment.

Future research will focus on the US case law. We did not
take into account, in our study, the comparison of the two
legal systems. Moreover, a broader analysis on IPR issues
would also be interesting in a comparative dimension. Be-
side reverse engineering, there is also the broader field of
software cloning i.e., a form of software reuse. In any case

such debate is crucial for software engineers, since it has a
huge impact on the copyright and commercialization of soft-
ware. Further works could figure how such rules are consid-
ered within the software engineer community, according to
the past case law and the software engineering literature.
Furthermore, a qualitative study on the most relevant Eu-
ropean software houses can be pursued, to understand, how
and if the SAS ruling changed their business model and IPR
policies. It would be interesting to study the change of be-
havior (if there is a change) of software houses to protect
their copyright. An unstructured interview with key target
software houses could give good insights for first results and
further steps.

7. ACKNOWLEDGMENTS
This paper has been partially supported by MIUR PRIN
IDEAS and the Consorzio Interuniversitario Nazionale per
l’Informatica (CINI) - the EU ARTEMIS EMC2 Project.

8. REFERENCES
[1] Canfora, G., Di Penta, M., Cerulo, L.: Achievements

and Challenges in Software Reverse Engineering.
Comunications of the ACM. 54 (4), 142–151 (2011)

[2] Chikofsky, E., J., Cross, J, H. II: Reverse Engineering
and Design Recovery: A Taxonomy IEEE Software. 7
(1), 13–17 (1990)

[3] Ciancarini P., Poggi F., Rossi D., Sillitti A.:
Improving bug predictions in multi-core cyber-physical
systems 4th Int. Conf. on Software Engineering for
Defense Applications (SEDA 2015). Rome, Italy, 2015

[4] Davis, A., M.: Principles of Software Development.
McGraw-Hill, (1995)

[5] Gansner, E., R., North, S., C.: An open graph
visualization system and its applications to software
engineering. Software Practice and Experience. 30
(11), 1203–1233 (2000)

[6] Di Bella E., Sillitti A., Succi G.: A multivariate
classification of open source developers Information
Sciences. 221, 72–83 (2013)

[7] Klimek, I., Keltika, M., Frantǐsek, J.: Reverse
engineering as an education tool in computer science.
9th Int. Conf. on Emerging eLearning Technologies
and Applications (ICETA). 123–126 (2011)

[8] Lanza, M., Ducasse, S.: Polymetric views-a
lightweight visual approach to reverse engineering
IEEE Transactions on Software Engineering. 29 (9),
782–795 (2003)

[9] Runeson, P., Höst, M.: Guidelines for conducting and
reporting case study research in software engineering
Empirical Software Engineering. 14 (2), 131–164
(2009)

[10] Sommerville, I.: Software Engineering. 10th ed.,
Pearson (2015)

APPENDIX

A. THE EU CASE LAW

1502

1503

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

