
Learning Agile Software Development in High School:
an Investigation

Marcello Missiroli
DIEF, University of Modena

and Reggio Emilia
Via Vivarelli, 10
Modena, Italy

marcello.missiroli@unimore.it

Daniel Russo
DISI, University of Bologna

Mura Anteo Zamboni, 7
Bologna, Italy

daniel.russo@unibo.it

Paolo Ciancarini
DISI, University of Bologna

Mura Anteo Zamboni, 7
Bologna, Italy

paolo.ciancarini@unibo.it

ABSTRACT

Context: Empirical investigations regarding using Agile
programming methodologies in high schools are scarce in
the literature.
Objective: This paper evaluates (i) the performance, (ii)
the code quality, and (iii) the satisfaction of both students
and teachers in using Agile practices in education.
Method: this study includes an experiment, administered
in a laboratory controlled setting to measure students’ per-
formances and a case study to value the code quality im-
provements. Questionnaires were also used to evaluate qual-
itative aspects of Agile practices.
Results: groups of students with mixed skills performed
significantly better than groups with the same skill level.
Moreover, there was also a general increase in code quality
along with satisfaction.
Conclusions: Agile methodologies are useful in the High
School education of young software developers.

CCS Concepts

•Social and professional topics → K-12 education;
Software engineering education; •Software and its engi-
neering → Object oriented development;

Keywords

Agile; Pair Programming; High School Education

1. MOTIVATION
The early days of software development were based on

plan-driven methodologies, among which the waterfall model
is the most famous. As a reaction to the problems that
still exist with plan-driven methods, the Agile movement
emerged, offering an alternative approach to software project
development [10]. Agile methods offer a compromise be-
tween not enough process and too much process, being adap-
tive rather than predictive and, accordingly, they welcome

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889180

change, which is an integral part of any software develop-
ment process.

Agile methods are also people-oriented rather than process-
oriented. The Agile movement identifies several general prin-
ciples, values and practices, that are coded in various soft-
ware development methods, such as Scrum, FDD, XP. In
this work, we focus on some of the well-defined practices
described in Extreme Programming (XP) [3], which can be
applied to a school environment - in particular, we concen-
trate on Pair Programming, Time Boxing, User Stories De-
velopment and Test-First Development.

During the last fifteen years, Agile methods and prac-
tices have been gaining popularity in the software, indus-
trial and academic worlds. The Agile movement prompted
a move from monolithic, formal, and individualistic meth-
ods to a flexible, relaxed, and social one. Though Agile
methodologies are not yet widespread, studies show that
they bring distinctive advantages [1], especially in case of
small projects [22] and when practices are correctly executed
[6]. Thus, they are used in a wide range of environments,
also Mission & Security ones [20].

However, Agile is not taught as part of standard program-
ming syllabi in most universities, although it is sometimes
introduced - but not tested first-hand - in high level graduate
courses. Most of the times it is learned “on the field”, often
after attending expensive seminars. In particular, teaching
Agile methods in high school is almost unheard of. If you ask
Agile experts about this, they will probably reply that Ag-
ile is “difficult” and “requires already skilled programmers”.
But, probably, the real reason is that no other way has been
proposed or tested yet.

In fact, it seems irrational to unlearn traditional program-
ming techniques to learn Agile ones. In this paper we ask: if
Agile is the correct way to develop software, why not learn it
right from the start? Can learning Agile practices bring sig-
nificant advantages to our programmers-to-be, maybe even
by teaching programming in a different, more productive
and fun way?

We have attempted to address these questions. We show
the results of an investigation conducted on very young pro-
grammers in a high school context. Focusing on Agile prac-
tices, we considered several diverse factors, such as grades
received, static analysis of the code, and psychological fac-
tors in both teachers and students.

While far from decisive, results show that, with some ad-
justments, Agile deserves a place in High-School CS educa-
tion.

2016 IEEE/ACM 38th IEEE International Conference on Software Engineering Companion

 293

This paper has the following structure: section 2 sum-
marizes the context of the schools we targeted, outlining
the main information on courses where software develop-
ment is taught, and the related literature; then section 3
describes the experiments we set up with students of those
high schools; in section 4 we describe which analysis tasks
we perform on the code developed by the students in order
to evaluate the impact of Agile practices; in section 5 we de-
scribe how the subject options on Agile were organized and
collected; then in section 6 we analyze the statistical signif-
icance of positive or negative performances of students; in
section 7 we show the results of the administered survey and
interviews; finally, in section 8 we draw our conclusions.

2. RELATED WORK
Even though Pair Programming is a widely studied method-

ology in software engineering, little was done to investigate
its application in K-12 environments. Several studies have
discussed the effectiveness of Agile practices in an indus-
trial environment (one of the most thorough being [8]) and
in an academic environment [13, 9]. Very few studies con-
centrate on Agile practices in High School, excluding rare
European cases such as the application of the Eduscrum
method [7], Extreme apprenticeship [23] and a German re-
search group [19]. None of these, however, offer rigorous
quantitative analysis of the results.
Educational science has made tremendous progress in the

last century. Thanks to illustrious practitioners and thinkers,
such as Montessori [16], Papert [17], Kolb [12], we changed
our perspective on students from a standardized “vessel to
be filled with knowledge” to that of a unique, social and ac-
tive pursuer of knowledge; the focus shifted from the teacher,
once absolute ruler and custodian of knowledge, to the learner.
Cooperative learning, in particular, is one of the most

famous teaching strategies proposed by Johnson and John-
son in [18], in which small teams of individuals, each with
different ability levels, use a variety of learning activities
to improve their understanding of a subject. The model
identifies five essential elements: positive interdependence,
promotive interaction, individual accountability, group pro-
cessing, and social skills. The model led to more formalized
techniques (such as STAD, Jigsaw) that have been success-
fully applied to several subjects, from Chemistry to Foreign
Languages [5, 2]. Another interesting and related strategy is
project-based learning [15, 25] (PBL); with it, students
actively explore real-world, complex problems and acquire
deeper knowledge by actually creating a product.
Turning the attention to computer science, and formal

programming teaching in particular, we notice that these
teaching strategies are rarely used. Programming is most of
the time considered an individual activity, and the waterfall
development model is often the only development strategy
taught in schools and even universities [13].
We found a lack of didactic awareness in the computer sci-

ence community. Thus, with this paper, we want to explore
those aspects. In particular how constructivism, PBL and
cooperative learning fit in with high school programming ed-
ucation, since software production is, after all, the main goal
of CS, and Cooperative learning can easily be linked to Ag-
ile principles (e.g., face-to-face communication, motivated
individuals, self-organizing teams) and practices (e.g., Pair
Programming, Common code ownership, Retrospectives).
Our work aims to be a first attempt to study the practical

effects of such practices on high school students.

3. EXPERIMENT
In this section, we describe in details the experiment,

which is the basis of our research. The goals of the ex-
periment are outlined below, as research question 1:

Object of study. The object of the study is the outcome
of a programming project of varying size.
Purpose. The purpose is to evaluate the impact of Agile
practices in a high school environment.
Quality focus. The quality focus is the students’ results.
Perspective. The perspective is the teachers’ one.
Context. The experiment is conducted using high school
students with at least one year of programming experience.

Summary: The analysis of the outcome of a programming
project for the purpose of evaluation of the Agile practices
impact as a learning tool in high school with product eval-
uation from the point of view of teacher in the context of
basic and complex programming development performed by
high school students.

We follow the experiment methodology proposed byWohlin,
et al. [24]: context selection, hypotheses formulation, vari-
ables selection, selection of subjects, experiment design, in-
strumentation, and validity evaluation.

3.1 Context selection
The context of the experiment was the students of the last

two years of Computer Science course in Italian high schools
featuring CS teaching.

The Italian school system has only recently reached a sta-
ble configuration after its 2011 reform. Our discussion fo-
cuses on the current situation. In contrast to many other
developed countries, computer programming is not widely
taught in Italian schools, especially in secondary schools.

In fact, when a teenager enrolls in secondary school, she
cannot freely choose subjects: these are automatically de-
termined by the type of school she has chosen according to
national laws. This strongly centralized organization of dis-
ciplines restricts proper teaching of computer programming
and software development to the following types of schools:
the Applied Science Gymnasium (2 CS hours/week, for five
years), Industrial Technical schools (3-8 hours/week, three
years) and some Commercial Schools (3 hours/week, three
years). As a result, only about 25% of the current school
population is instructed in programming and has some ex-
perience in software development. Within the scope of our
investigation, this dramatically reduces the size of potential
experiment subjects (both teachers and students).

Classes were randomly selected within the population of
three Italian provinces. For the experiment in Commercial
Schools we set Test Case 2 in one class from the 4th year.
For the experiment in Technical Schools we set Test Case 1
in two classes from the 4th year and Test Case 1 in one class
from the 5th year.

3.2 Hypothesis formulation
The crucial aspect of the experiments is to know and for-

mally state what we intend to evaluate. These are the quan-
tifiable hypotheses to be tested:

• H0CD/TDD/US/SP/PP : There is no difference in the
mean value of Product Evaluation (PE) between the
software development projects using any combination

294

Table 1: Experiment context - groups coded by color and type
Subjects ALL Pair

Total
Solo
Total

GreenP
(G-G)

CyanP
(G-A)

YellowP
(G-P)

BlueP
(A-A)

MagentaP
(A-P)

RedS
(P-P)

GreenS
(G)

BlueS
(A)

RedS
(P)

– 4th year 61 50 11 8 10 6 8 10 8 4 3 3
– 5th year 23 18 5 4 4 4 2 0 4 2 1 2
–Test Case 1 44 36 8 6 8 4 6 8 6 3 2 2
–Test Case 2 40 32 8 6 6 6 4 2 6 3 2 3

of Classic Development/TDD (test-first)/US (User Sto-
ries) and Solo/Pair programming development method
(CD, TDD, US, SP and PP are used to denote devel-
opment methods).

• HACD/TDD/US/SP/PP : There is a difference in the
mean value of PE between the software development
projects using any combination of CD/TDD/US and
Solo/Pair programming development method.

The one metric to be used in the experiment is Product
Evaluation (PE). In an industrial context, this is essentially
the outcome of an acceptance test. When we move to a
school context, the teacher becomes the “customer”, thus
the grade is a direct measure of teacher satisfaction. In
Italy, grading is rarely a mechanical translation of points,
checklists, and rubrics into numbers, but involves a series of
other contextual and subjective considerations; the overall
result is that students get a very limited grade fluctuation
throughout the year, which means that the current average
grade becomes an excellent estimate of how they will per-
form in similar situations. In our test we wanted, however,
to minimize subjective variation to the minimum, so we de-
vised a system that almost directly translates the amount of
completed features to a grade value.

3.3 Selection of subjects
The entire classe took part in the experiment. To limit

teacher assessment and class level differences, we grouped
students in three categories, with the respect to their “Ex-
pected Performance” (EP), essentially the average of all pre-
vious grades the student had at the time of the experiment.
We coded these groups using the three primary colors of the
RGB color coding system:
“Good” (GREEN). These are students whose average

grade is 7 or more in the Italian ten-point grading system,
though in practice only grades 7 to 8 are used - grades above
8 being extremely rare. This roughly equates to US B grade
and above, or 72% or more). The expected average perfor-
mance will be 7.5 or 75% of the maximum score.
“Average” (BLUE). These are students that are consid-
ered“more or less sufficient”, or around 6 in the Italian grad-
ing system (roughly comparable to B- to C grade, or around
the 70-55%). The expected performance will be about 60%
of the maximum score.
“Poor” (RED). These are students whose average grade is
5.5 or less in the Italian ten-point grading system, though in
practice only grades 4 to 5.5 are used - grades below being
4 extremely rare. This roughly equates to grades C- and
below, or 50% or less). The expected performance will be
50% of the maximum score.
Note that in Italy the phenomenon of grade inflation [26] is

rather uncommon; as a result, grade distribution is generally
a normal distribution centered on the more-than-sufficient

grade (6.5 out of 10), giving Italian teachers a reputation of
being “stingy”.

Using a random-stratified selection, we then made up the
pairs by combining all possible skill levels, resulting in 6
possible pair types - mixed groups acquire the code ob-
tained by mixing their respective color and group type ini-
tial (Good+Average: CyanP; Good+Poor: YellowP; Aver-
age+Poor: MagentaP); three possible solo types (GreenS,
BlueS, RedS), that will become the control groups were also
determined. Table 1 shows the full coding used.

We can now estimate the EP of heterogeneous pairs by
averaging the expected performance of group members. For
example, the expected performance of the “CyanP” group
would be 6.75 - average of 7.5 and 6. To better control our
independent variable, the experimenters did not announce
the grouping criteria. This because groups needed to be
tested with the lowest internal bias with respect to their
performance. We accordingly assigned a codename for each
group/solo type.

3.4 Design
Designing the experiment as a hands-on programming ex-

perience is not easy. One problem is the varying degree of
skills and interest of the students, forcing us to choose an
average-difficulty task, but also considering how to reward
exceptional performances. The most limiting factor is, how-
ever, time. School class schedules are usually very rigid,
imposing constraints and an overall time-limit, lab use and
instruction, often imposing substantial bureaucratic work.
In addition, the educational curriculum of each class requires
that the experiment be carried out in a specific part of the
year, when students already have sufficient knowledge and
experience to successfully conclude the experiment. There-
fore, we are limited to but one experiment session per class
per year. So, we used a single installment to test multiple
Agile practices at the same time.

Given the above limitations, we designed two possible ex-
periment formats, a short version and a long version.

Test Case 1. Test Case one is the short form of the
experiment, and it is designed to test Test-First Develop-
ment, Timeboxing, and Pair Programming, focusing on ba-
sic, desktop development. We wanted the test to be straight-
forward, with no complex algorithm, since time require-
ments were very strict. The prerequisites for the experi-
ment are knowledge of an object-oriented programming lan-
guage(in our case, Java) and experience with an advanced
IDE with automated testing support (in our case, Netbeans).
Previous knowledge of the testing framework (JUnit) or Ag-
ile practices was neither expected nor required.

Both prerequisites are part of the standard curriculum for
all students of the 4th year of the target schools.

We modeled our test on the Tennis Game Kata: the final
product is a software object able to convert basic tennis

295

“points” to human-readable “scores”, and to determine the
game winner. We then devised a sequence of JUnit tests
that the students used both as a guide and as acceptance
test; the subjects were forced to follow the sequence of 8
JUnit tests exactly. To that, we added a couple of “forced
pauses” to allow refactoring time.
The final performance score was mostly determined by the

number of the test, resulting in a score from 0 to 8, to which
1 was added. We reserved one bonus point to be added at
the teacher’s discretion, to reward exceptional performance
or situations; the final range is therefore 1 to 10.
Test Case 2. The longer version of the test is in fact a

mini-project, as the students are asked to build from scratch
a complete web application - more specifically, a microblog-
ging web platform. Significantly greater knowledge was re-
quired than in the previous test case; test subjects needed
to know a web programming language, in particular HTML
and a server-side programming language; experience with
web servers, including FTP operations in case of remote
hosting providers; finally, basic experience with databases
and their interaction with web applications. Again, no pre-
vious knowledge of Agile practices was assumed.
All the above competences are part of the standard edu-

cational curricula and, although the experiment can be per-
formed on a variety of platforms and languages, we chose the
W/LAMP platform (Windows or Linux / Apache / Mysql
/ PHP), which was taught in both target classes.
We then wrote a series of User Stories that formed the

“backlog” of the project. The acceptance conditions were
to be tested on a running system, either local or remote,
and not by looking at the code; though not completely au-
tomatic, this reduced the human factor involved in the ac-
ceptance tests. Some user stories were substantially more
complicated than the others, so we assigned 2 story points
to each of them, and 1 point to the others.
The final score varied from 0 to 8, to which 1 was added.

Again, we reserved one extra point for out-of-the-ordinary
performance (decided by the teacher), to obtain the usual
1-10 range.

3.5 Planning - Instrumentation
The instrumentation involved the computer science labs

of the schools involved (about 20 networked workstations),
the Netbeans IDE project framework, the requirement spec-
ification (JUnit tests or user stories).

3.6 Validity
Concerning the validity explanation of our experiment, we

are aware of statistical conclusion, internal, construct and
external validity threats [21].
Threats to statistical conclusion validity are considered to

be under control. Robust statistical techniques, tools and
representative sample sizes to increase statistical power are
used. Moreover, measures and treatment implementation
are considered reliable.
Threats to internal validity are considered to be under

control. Random assignment of the research subjects, with
respect to their previous performance and the treatment per-
formance, were designed to maximize internal validity. Since
the major aim of the experiment was to determine causation,
the greatest attention was paidto this aspect. Test subjects
were evaluated according to their past school performance
(highly reliable due to the relevance of the time series i.e.,

grades given in a relevant time frame) and the experiment
performance.

Threats to construct validity are not considered very harm-
ful. The inadequate explication of constructs is considered
to be a an incentive for the elaboration of better educational
frameworks for the education of future computer scientist
generations. Even if we considered the literature background
to be inadequate, we based our design on Constructivism.
However, we recognize that there is an urgent need to re-
think the educational approaches to computer science, es-
pecially in high school. Limitations to experiments in high
school were already discussed and considered to be under
control.

Threats to external validity are not considered very harm-
ful. Since our primary goal is to validate causation (our
hypothesis), external validity, i.e., the capability to gener-
alize the conclusions is considered adequate. Our sample
was randomly defined, to maximize internal validity. Thus
we considered 84 students of three Italian provinces, choos-
ing different school types and different age groups. As we
know, there is a constant trade-off between internal and ex-
ternal validity and our sampling strategy took this into ac-
count [11].

It was concluded that the threats were not regarded as be-
ing critical. Experiment materials and anonymized data are
publicly available at https://bitbucket.org/marcello missiroli/
agileschool data.

3.7 Operation
The experiments were conducted from December 2014 to

May 2015; in total, 84 students were tested in the four se-
lected classes.

Test Case 1. Since the Kata is relatively well-known and
easily found on the Internet, we decided to block Internet
access during the test, in order to avoid so-calledGoogle-and-
Paste-style programming. After a short explanation of the
task, each group was given the first (and only the first) test
of the suite. We let the students work freely, and only after
checking that the current test, and all previous ones, were
green, were they allowed to proceed to the next step - each
step was freely available, but password-protected. When
they reached steps 6 and 10 they were forced to take a mini-
mum 3-minute stop to refactor the code. The final, optional
step, was conceived as a way to keep better coders busy
whilst the others completed their task and possibly reward
them with the bonus point. Every 15 minutes we forced
pair teams to exchange roles, as dictated by Pair Program-
ming rules; after two hours we had a longer 10’ rest - which
in fact coincided with school recess. The most significant
problem was that someone had problems with JUnit, result-
ing in“green” tests even though they were not; that required
“backtracking” some steps for the groups involved. In one
case we found out that the students inadvertently “cheated”
by modifying the JUnit code to pass the test, but the case
was dismissed with no consequences. The allotted time of
two hours was considered adequate for all involved.

Test Case 2. In this case, we had to grant Internet ac-
cess to all students, since some of them had to access remote
hosting services; moreover, this reflected the idea that this
test offered far more developing possibilities than the other
one, and we felt that using the Internet as a resource was
part of all-round programming competence. Unfortunately,
one student was missing and another one showed up late for

296

Figure 1: Test Case 2 in action (Dec 01, 2014)

the experiment; we were forced to reorganize pairs on the
fly, resulting in a sub-optimal Pair/Solo distribution. After
the 20-minute long instruction session, each group was given
a printed copy of the user stories, and they could pick the
one they wanted - sadly, due to space limitations, it was not
possible to have real Taskboards to work with. As in the
previous case, strict adherence to Pair Programming was
enforced with a timer. When a story was completed, the
group returned the card to the examiners (one of us and the
class teacher), who checked the acceptance conditions. If the
story was accepted, the team scored the number of “points”
stated on the card and could proceed with the next story;
otherwise, they had to go back and revise the code. Work-
ing on multiple user stories at the same time was prohibited;
talking with colleagues was neither encouraged nor forbid-
den. The allotted time of 5 and half hours was considered
adequate for all involved.
After the time expired, the “score cards” for each group

were collected and filed under the appropriate label (GreenP,
YellowP and so on).

4. CASE STUDY
In this section, we wanted to analyze the code produced

by the test subjects, in order to determine whether Agile
practices have any effect on the quality of code; in particu-
lar, as Agile values maintainability, we expected that code
developed in this way to be more maintainable, simple and
efficient. We ran a Case Study since the code baseline was
gathered by a similar exercise that was not administered in
an experimental setting by the students’ teacher. Moreover,
teacher evaluations were not considered completely homoge-
nous among the selected subjects. So, in order not to not
invalidate the experiment, we chose to run this as a Case
Study since we needed a more open and flexible research
tool to cope ”with the complex and dynamic characteristics
of real world phenomenon.” [24].
We then formulated research question 2 as follows:
Object of study. The objects of study is the code of a

programming project.
Purpose. The purpose is to evaluate the impact of agile
practices in a high school environment.
Quality focus. The quality focus is on the students’ code.
Perspective. The perspective is the teachers’ perpective.
Context. The research is conducted by engaging high school
students with at least one year of programming experience.
Summary: The analysis of the code for the purpose of eval-

uation of the impact of Agile practices as a teaching method
in high school with static code analysis tools from the point

of view of the teacher in the context of basic and complex
software development by the students.

Once more, we followe the experiment methodology pro-
posed in [24]: design, selection criteria, data collection, va-
lidity, plan validity.

4.1 Design
Defining and measuring software quality is very difficult

in general [4], and especially so in case of elementary algo-
rithms within small-scale school projects. Since there are
several metrics that can be applied to software, we decided
to separately analyze five “classical” code metrics, including
the overall quality indicator SQALE [14]. To summarize,
the metrics we used were:
CCOMP: Cyclomatic complexity per source code file
CL: Commented lines of code produced by the group
DL: Duplicated lines of code
NCLOC: Total number of non-commenting lines of code
ISS: Number of programming issues
SQALE: A holistic quality indicator

One advantage of these metrics is that they can be calcu-
lated by using appropriate tools on the source code, produc-
ing data that can analyzed at leisure later.

4.2 Selection Criteria
The Italian school context is the one described in 3.3. To

conduct our code analysis, we need two codebases: one pro-
duced with standard methodologies (baseline codebase),
and the other with agile techniques (agile codebase). Of
course, we intend to use the material produced during our
experiment as the agile codebase, since it uses a combination
of one or more agile practices; moreover, it is partitioned ac-
cording to subject skills and produced in a very controlled
environment.To acquire the baseline codebase, with the help
of the class teacher, we selected a suitable, recently executed
lab exercise with characteristics similar to those of the ex-
periment.

4.3 Data Collection
Collecting the Agile codebase was easy, but organizing

it was not straightforward. For example, some groups re-
fused to turn in the code, even though they had made some
advancements - as certified by the teacher. As this was sig-
nificant, we decided to add a special record to the data that
took into account the “failure” of the pair/individual. In
Test Case 1, most groups submitted two or more files, one
of which being the boilerplate code for the ancillary object.
This file was either empty or with a useless main() method,
so it was excluded from calculations. In rare cases, the stu-
dents wrote an additional class: a GUI interface, a secondary
Object, a derived class. Since they were all pertinent to the
problem goal, we decided to include them in calculations.

Collecting the baseline codebase was more difficult, since
different teachers had different filing methods. In one case,
the project was archived on single LibreOffice document, so
we had to extract the single files by hand. We also had the
problem that 2/3 of the Agile codebase was the product of
a pair, but the previous codebase was produced by single
individuals. We overcame this problem with the help of the
teacher, by creating a fictional project containing the code of
the same individuals that made up the pair, and analyzing
the code as a single product.

297

We had to select an analyzing tool for our codebases, and
we chose Sonarqube [www.sonarqube.org], because it sup-
ported both Java and PHP, it was easy to install and use,
and it supported all the metrics we were interested in. In
addition, it was free and open source software.

4.4 Plan Validity
We understand that plan validity has four aspects: Con-

struct Validity, Internal Validity, External Validity, and Re-
liability [21].
Construct Validity is under control. We used several, well

established and deterministic metrics to evaluate the code,
and we considered them separately in our analysis.
Threats to Internal Validity depend on how much the

tasks that originated the codebases were similar, the con-
ditions under which the coding experiment was executed,
and how the investigated metrics might be affected by some
uncontrolled factor. The cooperation with the class teacher
assures that both experiments were indeed similar and exe-
cuted in similar psychological and environmental conditions.
The fact that more than one Agile practice was tested at the
same time might indeed be a threat to internal validity, but
the impact would be limited. Hence, also this aspect was
under control.
External validity was under control. The population was

drawn from different types of schools, courses and cities; in
addition, the target classes were, in the opinion of teachers,
of average level.
Reliability was under control. Programming tasks were

based on standard curricula, all code metrics were well-
established and the tools used were open and free software.
Both codebases and raw analysis results are available at

https://bitbucket.org/marcello missiroli/agileschool data.

5. SURVEY
As a final element of our investigation, we discuss if the

experiment was deemed useful in terms of learning experi-
ence and if it could be used not only as a one-off event but
as a regular practice in the daily teaching routine.
We formalize the research question 3 as follows:
Object of study. The object of study is the learning

environment actors: students and teachers.
Purpose. The purpose is to evaluate the impact of Agile
practices in a high school environment.
Quality focus. The quality focus is the perceived utility of
Agile practices.
Perspective. The perspectives are the teachers’ and the
students’ ones.
Context. The research is conducted on high school students
with at least one year of programming experience and on all
CS teachers in the related provinces.
Summary: The analysis of the opinions for the purpose

of evaluation of Agile practices impact as a teaching tool
on high schools with respect of perceived usefulness from the
point of view of teachers and students in the context of pro-
gramming projects.

5.1 Research Participants and Data Gather-
ing Tools

First, we designed an Experiment Feedback question-
naire for all students who participated in the experiment,
aiming at determining how the new methodologies were re-
ceived at a psychological level. In particular, we wanted to

determine if the programming experience was pleasant and
useful. In almost all questions we used a standard 5-level
Likert-scale.

We then organized aReflective Interview with the teach-
ers involved in the experiment, consisting of a series of fo-
cused questions. The goal was to determine if the experience
was successful, and if the teachers foresaw Agile practices as
a sustainable, day-to-day practice for CS teaching.

Finally, as we wanted also to have an idea of the general
disposition of CS-high school teachers towards Agile, we pre-
pared an Agile Awareness Survey to be submitted to all
CS-teachers in the three selected target provinces, a group
of an estimated size of 110. The goals were to determine
what a teacher knows about Agile programming and related
techniques and if they are interested in trying them outwith
their classes. In almost all questions we used a standard
5-level Likert-scale.

5.2 Research Process
The Experiment Feedback questionnaire was proposed to

the students after the experiment was over by using Google
Forms, stating that it should be completed within the week.
The response turnout was surprisingly high, around 70%,
especially given that there was no school-related incentive
to do so.

The Reflective Interview was performed much later, at the
end of the school year, when it was possible to determine if
the experience could have had an impact on the final grade
achieved by the students.

Conducting the Agile Awareness Survey presented a ma-
jor problem, in that a listing of all computer science teacher
of the selected provinces is not publicly available. The co-
ordinating “Ufficio Scolastico Regionale” (Regional School
Board) proved to be uncooperative, refusing both to pro-
duce an email listing of the teachers and to forward the
form-filling request to them. Therefore, we had to send the
request to the school principals, asking them to forward it
to the teachers - this has sadly been proven to be a re-
ally inefficient means of communication. Unsurprisingly, the
turnout rate was very low, about 20% of the intended pop-
ulation. Questionnaires, driving questions and anonymized
results are also publicly available at https://bitbucket.org/
marcello missiroli/agileschool data.

6. ANALYSIS
In this section, we show and analyze the results of our

Experiment and Case Study.

6.1 Experiment
Experimental data were evaluated with descriptive anal-

ysis and statistical tests. What we wanted to understand
is if there was a significant change (positive or negative) of
the students’ performance using Pair Programming as an
educational programming methodology. So, we clustered all
our experiments by levels; descriptive statistics are summa-
rized in Table 2. In rows we tested our sample for each pair
level group for the most significant descriptive value (i.e.,
Mean, Standard Error, Median, Mode, Standard Deviation,
Kurtosis, Skewness, Interval, Minimum, Maximum, number
of observations (OBS), Confidence level (CL) at 95%). We
considered the results of similar groups which run the ex-
periment and analyzed their clustered performance.

298

Table 2: Descriptive Statistics
Performance BlueP MagentaP CyanP GreenP YellowP RedP Solos

Mean 4 5 8.14 7.5 7.4 5 5.7
Standard
Error

0.84 1.05 0.59 0.85 0.4 0.95 0.67

Median 5 4 9 7.5 7 5 6
Mode 2 4 9 7 7 5 5
Standard
Deviation

1.87 2.35 1.57 2.07 0.89 2.12 2.6

Kurtosis -2.90 3.32 -1.16 1.11 5 2 -0.58
Skewness -0.38 1.74 -0.68 -0.81 2.24 0 -0.52
Interval 4 6 4 6 2 6 8
Min 2 3 6 4 7 2 1
Max 6 9 10 10 9 8 9
OBS # 5 5 7 6 5 5 15
CL (95,0%) 2.32 2.91 1.46 2.18 1.11 2.63 1.44

Table 3: Hypothesis Analysis
BlueP MagentaP CyanP GreenP YellowP RedP Solos
P EP P EP P EP P EP P EP P EP P EP

Mean 4 6 5 5.5 8.14 6.5 7.5 7 7.4 6 5 5 5.7 6.2
Variance 3.5 0 5.5 0 2.48 0 4.3 0 0.8 0 4.5 0 6.8 1.2
Observations 5 5 5 5 7 7 6 6 5 5 5 5 15 15
df 4 4 6 5 4 4 14
t Stat -2.39 -0.48 2.76 0.59 3.5 0 -0.92
P(T<=t) two tails 0.07 0.66 0.03 0.58 0.02 1 0.37
t Critical two tails 2.78 2.78 2.45 2.57 2.78 2.78 2.14

No clear trend emerged, so we had to perform additional
analyses of hypothesis testing.

6.1.1 Hypothesis Testing

Experimental data were analyzed using models that relate
the dependent variable to the factor under consideration.
More in detail, we ran our analysis to compare the performed
task with the expected result. The performance (P) was
the 1-10 grade obtained by the pair (using the procedure
described in 3.4). The expected performance (EP) was the
mean of both team members according to their past marks
(as described in 3.3).
The use of any model needs to be validated. Thus, we ran

a t-Test of paired two samples for mean. This is because a
sample from the population is chosen and two measurements
for each element in the sample are taken. The two samples
were thus not independent of one another.
Table 3 shows the aggregated t Test for each group. In-

terestingly, only the CyanP (Good-Average) and YellowP
(Good-Poor) groups have a significant difference, according
to their expected performance. So, for these both cases we
rejected H0, since the t Stat in absolute value is larger than
the t Critical two tails coefficient. Now, to see how they per-
form differently, we test the means. Since in both cases the
means of their performance is larger than their expected one,
we conclude that for the CyanP and YellowP case, groups
using the Pair Programming methodology perform signifi-
cantly better.
For all other cases, we did not see any statistical signifi-

cance, since the t Stat was smaller than the t critical.
It should be pointed out that there was a significative per-

formance boost in cases of heterogenous programming pairs
programmers consisting of at least one skilled programmer
(“CyanP” and “YellowP” groups). In contrast, the “BlueP”
group performed significantly worse than expected, even if
this is not statistically significant. We can generalize the re-
sult by saying that heterogenous groups perform equal
or better that expected, whereas homogenous groups
perform equal or worse than expected.

While this is in line with constructionist group formation
theory and practices [18, 25], our interpretation of this fact
is that Agile programming techniques, and PP in particu-
lar, foster interaction and knowledge sharing. This has a
beneficial effect in cases where there is an effective knowl-
edge gap between the team members, and particularly when
one member is - even subconsciously - acknowledged as au-
thoritative. In cases where one of these elements is missing,
the advantages of Agile practices are undecided. The case
of the poor Average-Average groups performance only con-
firms this hypothesis - we even observed one case of clear
bickering.

6.2 Code Analysis
Since we were working with two different programming

languages relating to different project types, we kept the
result of the analysis separated (as shown in Tables 4 and
5). We then examined the different metrics, one by one.

Cyclomatic Complexity average/file - CC. For Test
Case 1 (TDD), we have an average Cyclomatic Complex-
ity value of 18.99, a distinct increase with respect to the
codebase, in all skill groups and pairings. The fact is in-
contradiction with the Agile principle of Simplicity, which

299

Table 4: Code Analysis - Test Case 1 (Java)

Group CC DIFF CL DIFF DL DIFF ISS DIFF NCLOC DIFF SQALE DIFF

GreenP 22.5 181% 10.8 169% 0.0 -100% 16.0 140% 141.3 275% Better
CyanP 21.0 163% 8.2 85% 13.8 25% 7.5 1% 169.0 158% Equal
YellowP 25.0 213% 21.5 1333% 0.0 NA 12.5 150% 59.0 81% Worse
BlueP 22.5 181% 1.0 -69% 0.0 -100% 8.7 28% 88.0 130% Better
YellowP 18.8 134% 1.8 -56% 0.0 NA 6.0 20% 81.5 110% Equal
RedP 20.0 150% 3.5 250% 11.3 NA 7.3 -22% 67.7 122% Worse
GreenS 15.8 96% 30.3 278% 0.0 -100% 9.7 20% 84.3 122% Worse
BlueS 9.0 13% 4.0 300% 0.0 -100% 12.5 150% 41.5 -16% Much Worse
RedS 16.0 100% 5.0 0% 8.0 -56% 5.7 -51% 44.0 -1% Worse
AVG 18.9 137% 9.5 254% 3.7 NA 9.5 49% 86.3 109% Worse

Table 5: Code Analysis - Test Case 2 (PHP)
Group CC DIFF CL DIFF DL DIFF ISS DIFF NCLOC DIFF SQALE DIFF

GreenP 2.5 23% 0.1 -67% 30.3 -70% 39.0 -56% 188.0 7% Equal
CyanP 3.5 69% 0.2 51% 90.3 -9% 47.7 -23% 160.7 -32% Worse
YellowP 2.6 25% 1.1 342% 159.0 20% 88.3 -2% 256.3 15% Better
BlueP 0.9 -55% 0.0 / 14.3 -66% 3.8 -95% 8.9 -93% Equal
MagentaP 0.7 -65% 0.2 -85% 133.0 83% 35.0 -16% 30.0 -46% Better
RedP 2.2 8% 0.0 / 76.5 -2% 35.5 -63% 74.5 -60% Much Worse
GreenS 5.0 143% 0.0 / 67.5 -27% 83.5 258% 323.5 187% Equal
BlueS 0.7 -65% 0.2 0% 29.0 -43% 21.5 -5% 16.0 -75% Much Worse
RedS 1.7 -19% 0.0 / 143.0 240% 46.7 419% 181.0 298% Worse
AVG 2.2 7% 0.2 4% 82.6 14% 44.6 46% 137.7 22% Worse

was clearly shown and tested during instruction. We in-
terpreted the fact by noticing that timeboxing constraints
put relatively strong pressure on test subjects, who proba-
bly found the quickest, but not the simplest solution to the
problem. Though refactoring time was given, the students
had no incentives in effectively refining the code, as the only
stated objective was to have the code work, i.e. pass the
test. In Test Case 2 (US), we did notice a significant drop
in Complexity; however, the average value was of just 2.2
indicating that the structure of the program was very easy
to begin with, and Cyclomatic Complexity might not be a
good metric in this case.
Comment Lines average/file - CL. Results show that

Agile practices bring no advantage in this field. However,
the most significant fact is that the CL/NCLOC ratio was
terribly low in all cases considered. Commenting programs
is a good habit that comes with experience, and for reasons
similar to what has been discussed above, this test is not
well suited to promote it.
Duplicated lines average/project - DL. Test Case 1

shows a very small number of duplicated lines (an average
of 3 per project) with no statistical difference between the
two codebases. On the other hand, Test Case 2 shows a
marked reduction of duplicated lines, a tendency which is
more pronounced in case of heterogenous pairs, and in case
of pair programmers.
Issues/project - ISS. Though both test cases show an

overall increase in programming issues of the same order
(around +50%), in Test Case 2 we notice that pair program-
mers actually reduce the number of issues (-43%) whereas
solo programmers display a strong increase (+223%)
Number of non-commenting lines of code total -

NCLOC. Both test cases show a general increase in the
number of lines produced. It might however be debatable
whether this is an indication of either productivity or inef-
ficiency. Given that failed projects were considered to con-
tribute zero lines, we tend to value the first hypothesis.

SQALE index average/project. While it is compli-
cated to compare sets of different size, we notice that in both
cases there is a small decline in grades. However, pair pro-
grammers show overall no decrease in the ratings, whereas
solo programmers do show a moderate increase.

It is difficult to extrapolate from this data possible advan-
tages of Agile practices. Nevertheless, we notice that in the
case of medium-sized school projects, there are some advan-
tages in using agile practices in terms of duplicated lines and
overall number of issues, especially when pair programming
is used. In small-sized projects, however, Agile practices do
not appear to be useful, and can even be detrimental to code
quality. In any case, code refactoring should be handled us-
ing different instruction and testing methods.

7. SURVEY INTERPRETATION

7.1 Experiment Feedback
Feedback from students shows that Pair Programming is

regarded as a useful practice (see Table 6), allowing both
more code and fewer bugs. This point of view is shared
even by the control group.

Opinions diverge on other aspects. In particular, students
participating in PP feel they have learned something during
the programming experience, where solo programmers do
not. Pairs also noted that PP has been a positive experience,
and, to an even larger degree, that the pair worked well in

300

this situation. The response is quite surprising, since the
positive interaction of quasi-random working groups is not
assured.
Other Agile techniques did not fare so well. As shown

in Table 6, students show no love for timeboxing - it is
the worst-rated question. students probably felt too pressed
for the time; this is most unfortunate, since handling of
the time variable is a decisive aspect in software develop-
ment. User stories and acceptance conditions did not con-
vince our subjects, either. TFD fared a little better, being
acknowledged to be a means to enforce adherence to spec-
ification and produce correct code. But, overall, students
were unimpressed.
One possible explanation is that, in order to have a one-

day experiment, both user stories and tests were imposed
on groups, whereas in a real context they are self-produced
and agreed upon. This might also indicate that it is hard
to fully perceive the advantage of Agile practices without
some involvement in the analysis and design steps of soft-
ware development - an issue that will be addressed in future
experiments.
We also noted an interesting phenomenon: first, some stu-

dents answered questions they were not supposed to (for ex-
ample, they answered the TDD section, even though they
took part in Test Case 2 that did not include TDD) - we had
to correct the data taking this into account. In addition,
many mistook the formalized “Pair programming” practice
for the unstructured “Programming in couple on the same
workstation”, indicating that more precise tuition is required
before proceeding with the practical part of the experiment.

7.2 Reflective Interviews
In general, all teachers agreed on the overall beneficial

effect of the experience on motivation and the learning
environment, for all skill levels. In particular, Pair Pro-
gramming is considered to be a very useful technique, even
as a tool to be used in the professional world.
”Everybody was happy to do pair programming. In fact,

we had some grumbling from students selected for the control
group.”
They acknowledged the didactic value of Test Case 2 (longer

experiment), but felt a little uncertain of that of Test Case
1 (shorter). The opinion of other practices was ambivalent.
In particular, they thought that TFD had a bad influence
on studente performance, as well as timeboxing restraints -
to a lesser extent. User Stories and Acceptance condition
fared a little better, but they had some reservations. One
teacher noted:
”Some individuals were not interested in the experiment,

and did not like the fact that task directives were strict and
immutable; so they were not 100% committed. And the re-
sults show it.”
However, when asked to consider the overall effect of the

experiment on the course, including final grades, results were
somewhat surprising. They perceived a slight overall im-
provement in grades, regardless of skill levels, type of test
and pair/solo programming. This might suggest the possi-
bility of using agile methodologies as one of many teacher
tools in day-to-day teaching, as they pointed out:
”They are interesting methodologies to use from time to

time. Not all the time, though, as they require considerable
time and effort to be carried out.”

7.3 Agile Awareness Survey
Even given the low (20%) turnout rate, teachers’ responses

deserve consideration, as they are clearly polarized. For in-
stance, 58% of the teachers declared that they knew abso-
lutely nothing about Agile methodologies, while the remain-
ing teachers had only some theoretical knowledge (limited to
XP, Agile RUP, TDD, PP, and timeboxing). Their stance on
teaching using such techniques is somewhat puzzling: they
strongly think that agile techniques would not contribute to
the students’ software development techniques (68% of re-
sponses), but are uncertain of their effectiveness as a teach-
ing methodology; finally, most teachers (73.2%) declare they
would like to learn Agile methodologies and how to apply
them in a school context. Those few that have practiced
Agile techniques declare that they had some positive effects
on teaching.

We also note that 53% of the students programmed in
pairs. In most cases, students were able to work on a school
project, but only a few had the chance to develop more than
a single project during a school year.

8. CONCLUSIONS AND FURTHER WORK
While not decisive, our investigation shows that there

is a definite advantage to early exposure of inexperienced
programmers to Agile, not only as a project development
process, but also as a teaching tool. Pair programming is
the obvious winner, bringing clear advantages in motiva-
tion and “classroom mood”, code quality and, depending on
pair composition, grades. Furthermore, since most studente
are forced to program in pairs anyway, it is very easy to
implement. User stories, tied to longer programming ex-
perience, offer less clear advantages, but are deemed useful
by teachers. TDD and Timeboxing are more controversial,
especially taking pupils’ opinions into account. We believe
that the young people involved felt the task requirements
given to them to be too much “imposed from above”, and
teenagers do not like imposition, far less than undergradu-
ates and professionals do. As a lesson learned, we should
have included some elements of interaction and bargaining
with the students before starting the experiment, building a
more constructionist-oriented learning environment or, one
might say, a more Agile approach, whilst trying to come to
terms with the school’s institutional constraints.

Considering the favorable response of most CS-teachers
toward the object of our study, we are planning further in-
vestigation consisting in confirmatory experiments on the
above results (with some due adjustments) and exploratory
studies on other Agile techniques (such as refactoring, time-
boxing decisions, collective code ownership, etc.).

9. REFERENCES
[1] S. Ambler. 2013 it project success rates survey results.

[2] K. H. Árnadóttir. Cooperative learning in foreign
language teaching: A study of the use of group work in
language studies in icelandic secondary schools. 2014.

[3] K. Beck. Extreme programming explained: embrace
change. Addison-Wesley Professional, 2000.

[4] B. W. Boehm, J. R. Brown, and M. Lipow.
Quantitative evaluation of software quality. In
Proceedings of the 2nd international conference on
Software engineering, pages 592–605. IEEE Computer
Society Press, 1976.

301

Table 6: Experiment Feedback
Pair
Programming

Results
PP (AVG)

Results
SP (AVG)

Test-First
Development

Results
(AVG)

User Stories &
Timeboxing

Results
(AVG)

PP has been a posi-
tive experience

Agree
(2.71)

NA TFD allows for faster
development times

Undecided
(2.20)

US is a valid pro-
gramming tool

Disagree
(1.18)

My pair worked well
during the experience

Agree
(2.98)

NA TFD enforces adher-
ence to specifications

Agree
(2.50)

Acceptance condi-
tions are useful

Disagree
(1.25)

Solo programmers
produce BETTER
code

Disagree
(1.48)

Disagree
(1.39)

TFD produces more
correct code

Agree
(2.52)

Timeboxing is a guid-
ing tool, not a source
of stress

Disagree
(1.12)

Solo programmers
produce MORE code

Disagree
(1.35)

Undecided
(1.67)

TFD allows me to
write code faster

Undecided
(2.37)

I learned something
from this experience

Agree
(2.76)

Undecided
(1.88)

I will use TFD in the
future.

Undecided
(2.00)

TFD helps find bugs
in my code

Undecided
(2.32)

[5] C. W. Bowen. A quantitative literature review of
cooperative learning effects on high school and college
chemistry achievement. Journal of Chemical
education, 77(1):116, 2000.

[6] T. Chow and D.-B. Cao. A survey study of critical
success factors in agile software projects. Journal of
Systems and Software, 81(6):961–971, 2008.

[7] T. de Jager. Using eduscrum to introduce project-like
features in dutch secondary computer science
education. 2015.

[8] E. di Bella, I. Fronza, N. Phaphoom, A. Sillitti,
G. Succi, and J. Vlasenko. Pair programming and
software defects–a large, industrial case study.
Software Engineering, IEEE Transactions on,
39(7):930–953, 2013.

[9] T. Flohr and T. Schneider. Lessons learned from an
xp experiment with students: Test-first needs more
teachings. In Product-Focused Software Process
Improvement, pages 305–318. Springer, 2006.

[10] J. Highsmith and M. Fowler. The agile manifesto.
Software Development Magazine, 9(8):29–30, 2001.

[11] C. Judd, E. Smith, and L. Kidder. Research Methods
in Social Relations. Holt, Rinehart, and Winston,
1991.

[12] D. Kolb. Learning styles inventory. The Power of the
2 2 Matrix, page 267, 1985.

[13] M. Kropp and A. Meier. Teaching agile software
development at university level: Values, management,
and craftsmanship. In Software Engineering Education
and Training (CSEE&T), 2013 IEEE 26th Conference
on, pages 179–188. IEEE, 2013.

[14] J.-L. Letouzey. The sqale method for evaluating
technical debt. In Proceedings of the Third
International Workshop on Managing Technical Debt,
pages 31–36. IEEE Press, 2012.

[15] T. Markham. Project based learning a bridge just far
enough. Teacher Librarian, 39(2):38, 2011.

[16] M. Montessori. The montessori method. Transaction
Publishers, 2013.

[17] S. Papert. Constructionism: A new opportunity for
elementary science education. Massachusetts Institute
of Technology, Media Laboratory, Epistemology and
Learning Group, 1986.

[18] T. Roger and D. W. Johnson. Cooperative learning,

1994.

[19] R. Romeike and T. Göttel. Agile projects in high
school computing education: emphasizing a learners’
perspective. In Proceedings of the 7th Workshop in
Primary and Secondary Computing Education, pages
48–57. ACM, 2012.

[20] D. Russo. Proceedings of 4th International Conference
in Software Engineering for Defence Applications:
SEDA 2015, chapter Benefits of Open Source Software
in Defense Environments, pages 123–131. Springer
International Publishing, Cham, 2016.

[21] W. R. Shadish, T. D. Cook, and D. T. Campbell.
Experimental and quasi-experimental designs for
generalized causal inference. Wadsworth Cengage
learning, 2002.

[22] The Standish Group. Chaos manifesto 2013, 2013.

[23] A. Vihavainen, M. Paksula, and M. Luukkainen.
Extreme apprenticeship method in teaching
programming for beginners. In Proceedings of the 42nd
ACM technical symposium on Computer science
education, pages 93–98. ACM, 2011.

[24] C. Wohlin, P. Runeson, M. Host, and M. Ohlsson.
Experimentation in software engineering, 2000.

[25] E. Zecchi. Project based learning (pbl) activities using
the “lepida scuola” method.

[26] R. L. Ziomek and J. C. Svec. High school grades and
achievement: Evidence of grade inflation. act research
report series 95-3. 1995.

302

