
Exploiting agile practices to teach
Computational Thinking

Paolo Ciancarini1,2, Marcello Missiroli1, and Daniel Russo3

1 DISI, University of Bologna, Italy
2 Innopolis University, Russian Federation

3 Dept. Computer Science, Aalborg University, Denmark

Abstract. Computational Thinking has been introduced as a funda-
mental skill to acquire, just like basic skills like reading, writing, and
numeracy. The reason is that Computational Thinking is one of the
most important skills for XXI century citizens, in particular for pro-
grammers and scientists at large. Currently, Computer Science teaching
practices focus on individual programming and Computational Thinking
first, and only later address students to work in teams. We study how
Computational Thinking can be enhanced with social skills and teaming
practices, aiming at training our students in Computational Thinking
exploiting Agile values and practices. Based on prior studies, we de-
scribe and compare the four traditional software development learning
approaches: solo programmer, pair programmers, self-organized teams,
and directed teams. Such approaches have been explored in a number
of teaching experiments, involving a significant number of students, over
several years. Accordingly, we induced a model that we call Cooperative
Thinking, based on such previous evidence and grounded in literature.
This paper provides a research synthesis of previous works contextual-
ized in a pedagogical framework, and proposes a new learning paradigm
for software engineering education..

Keywords: Computer Education; Agile Methods; Computational Think-
ing; Meta–Analysis; Cooperative Thinking.

1 Introduction

Computational Thinking is a new form of literacy [62]. It is a concept that has
enjoyed increasing popularity during the last decade, especially in the educa-
tional field. Computational Thinking is usually considered an individual skill,
and practiced and trained as such [31, 63].

However, such an approach does not match current teaming structures of
both science and business, where problems and projects have become so com-
plex that a single individual cannot handle them within a reasonable time frame.
To handle the increasing complexity, especially in engineering software systems,
developers should be educated to act and operate as a team [17]. This is al-
ready happening in the business world. In fact, teaming is considered the key



2 P. Ciancarini et al.

driver to Digital Transformation, where solutions are not provided by individ-
uals but by self-organizing teams [18]. Digital Transformation is often subject
to“wicked problems”, which do not have an unique solution but many Pareto-
optimal ones [47]. This also applies to software development when complexity
becomes very high [20]. Moreover, the DevOps technological trend needs specific
approaches to support the training of developers/operators [5]

In Software Engineering, the role of the team and teamwork in general is es-
pecially crucial when Agile methods are used. The Agile principles acknowledge
that important information and know-how might not be available at the begin-
ning of a project [46]. Reaching the development goal requires several iterations,
to build incremental solutions of increasing value for the users.

A key agile team–building factor is self-organization, meaning that any mem-
ber of the developing team contributes with her knowledge, ability, and technical
skills in order to work out a solution. Since each team member is responsible
for the project as a whole, it is in everybody’s interest to organize work at best
– not bounce responsibilities. Moreover, teams are not static but they modify
their structure according to necessities, which change over time. Not surprisingly,
some organizations have built their competitive advantage and success on this
model [1]. They comply with Conway’s Law, according to which “organizations
which design systems [...] are constrained to produce designs which are copies of
the communication structures of these organizations” [10]. A consequence of this
observation is that organizations have to modify their communication structures
accordingly to the problem which need to be solved. Therefore, flexible and self-
organizing teams are best suited to comply with such pivotal evidence for any
organization.

We argue that Agile principles and values should enrich the current efforts to
establish Computational Thinking as a fundamental literacy ability. We call such
a combination Cooperative Computational Thinking, or Cooperative Thinking
for short. From a pedagogical perspective, it is grounded in Johnson & Johnson’s
Cooperative Learning approach, where students must work in groups to com-
plete tasks collectively toward academic goals [28]. We suggest a team-oriented
approach to educate software engineers in Computational Thinking. Educators
should not just promote some good software engineering practices; rather, they
should foster collaboration skills and train student teams to cooperate on wicked
problems. Programming skills are usually considered personal ones; in most cases
— job interviews, university exams, official certifications — the focus is always
the performance of the individual. We lack a general approach to enable group
skills in this context. Even if this idea may be widely shared by the community,
we did not find any evidence of a comprehensive approach to it. This is prob-
ably due to the lack of explicit awareness of such concept as enabler of Digital
Transformation processes: we may use it implicitly without recognizing it.

In this paper we analyze processes and interactions in four different learn-
ing modalities that mirror some standard software development models: solo
programmer, pair programmers, self-organized teams, and directed teams. We
report differences, practical and educational issues, their relative strengths with



Exploiting agile practices to teach Computational Thinking 3

respect to developing Computational Thinking skills on one hand and how they
impact Agile team-related skills, that form the base of Cooperative Thinking,
on the other.

As a result, we developed a model for Cooperative Thinking, contextualiz-
ing in relevant pedagogical theories. We provide results based on empirical and
theoretical evidence; they can be applied to daily teaching practices.

This paper is organized as follows. Section 2 provides background information
on related research on Computational Thinking and Agile education. In Section
3 we present the methodological framework used for this research synthesis. Sec-
tion 4 presents the investigations we performed in teaching Cooperative Thinking
comparing four modalities for organizing software development classes. Aggre-
gated insights from our synthesis are presented in Section 5, where we propose
actionable solution for educational practitioners. We discuss the synthesis of our
research in Section 6, presenting the details of the extension of Computational
Thinking with Agile practices, that we call Cooperative Thinking: self-organized
teams are an effective way to enact and support Cooperative Thinking. Finally,
in section 7, we summarize our vision, outline our future research, and draw our
conclusions.

2 Related works

Computational Thinking has generated a lot of interest in the scientific commu-
nity [62]. It is related to problem solving [44] and algorithms [33], because it is
the ability of formulating a problem and expressing its solution process so that
a human or a machine can effectively find a solution to the stated problem.

However, several scholars argue whether the Computational Thinking con-
cept is too vague to have a real effect. For instance, a recent critique has been
advanced by [15]. He claims that Computational Thinking is too vaguely defined
and, most important in an educational context, its evaluation is very difficult
to have practical effects. This same idea can be found in the CS Teaching com-
munity. [2] and [24] for example, try to decompose the Computational Thinking
idea itself, in order to have an operative definition. [23] notes that computing
education has been too slow moving from the computing programming model
to a more general one. [4] even wonders if the Computational Thinking concept
is at all useful in Computer Science, since it puts too much importance on ab-
stracts ideas. It is also remarkable that there is some research trying to correlate
CS and learning styles [25, 57], but generally inconclusive.

Though the Agile approach to software development is eventually going main-
stream in the professional world, teaching the Agile methodology is still relatively
uncommon, especially at the K-12 level. Moreover, a Waterfall-like development
model is often the main development strategy taught in universities [35]. Moreso,
it is usually limited to an introductory level and rarely tested firsthand. In prac-
tice, Agile is learned “on the field”, often after attending ad hoc seminars. In-
terest in the field is however rising, and curricula are being updated to reflect
this [55, 36]. An interesting and complete proposal has been proposed by [37].



4 P. Ciancarini et al.

The paper presents the “Agile Constructionist Mentoring Methodology” and
its year-long implementation in high school; it considers all aspects of software
development, with a strong pedagogical support.

To summarize, programming remains a difficult topic to learn and even to
teach, both at university and high school level; the ability to design and develop
software remains an individual skill and taught as such.

Some studies, however, tackle the idea that hard skills expertise should be
complemented with soft skills, possibly introducing active and cooperative learn-
ing [30]. For example, in [48], a long list of so-called soft skills expertise is paired
with various developer roles. In [8] the problem is well analyzed, but arguably the
proposed solution is not comprehensive. [38] presents an example of how to pro-
mote cooperation within a software project; however generalizing the proposed
scheme seems difficult. We note however that the approach is hardly systematic,
and no general consensus exists on how to proceed along this line.

3 Research Methodology

Meta-analysis is a widely known and old research procedure, firstly method-
ologically supported by the work of [21]. The first meta-analysis was probably
carried out by Andronicus of Rhodes in 60 BC, editing Aristotle’s 250 year
older manuscripts, concerning the work The Metaphysics. The prefix meta- was
then used to design studies whose aim is to provide new insights by grouping,
comparing, and analyzing previous contributions. Accordingly, we use the term
meta-analysis to indicate an analysis of analyses. In this sense, there are a vari-
ety of analysis of analyses, like systematic literature reviews, systematic mapping
studies, and research synthesis.

According to [12], a research synthesis can be defined as the conjunction of a
particular set of literature review characteristics with a different focus and goal.
Research synthesis aim to integrate empirical research in order to generalize
findings. The first effort to systematize from a methodological perspective a
research synthesis was performed by [11], building on the work of [27], proposing
a multi-stage model. The stages are the following: (i) problem definition, (ii)
collection of research evidence, (iii) evaluation of the correspondence between
methods, (iv) analysis of individual studies, (v) interpretation of cumulative
evidence, and (vi) presentation of results.

Following the multi-stage framework suggested in [11], we provide our prob-
lem definition, set as Research Question (RQ).

RQ: Is Computational Thinking scalable to teamwork?

To answer this question, we looked back to some previous works investigating
the phenomenon on different perspectives.

All analyzed papers are both homogeneous and comparable, as depicted in
Table 1.

We both provided insights on single papers in Section 4, and provide an
interpretation of cumulative evidence in Section 5.



Exploiting agile practices to teach Computational Thinking 5

Table 1. Investigation list

Title Focus of Experiment # Subjects Ref

Learning Agile software development
in high school: an investigation

Pair Programming,
Timeboxing,
User Stories,
Team Development

84 [39]

Teaching Test-First Programming:
assessment and solutions

Pair Programming,
Social dynamics

102 [41]

Agile for Millennials:
a comparative study

User Stories, Scrum,
Waterfall,
Team Development,
Timeboxing

160 [40]

As an outcome we propose a new educational framework, namely Cooperative
Thinking, which we use to answer to our research question in Section 6.

4 Results

We performed some experiments collecting several insights regarding teaming
for solving computational problems, as listed in Table 1.

For the purpose of this research synthesis, we abstracted empirical knowledge
and mapped learning models to learner types. To do so, we used the well–known
Kolb’s learning style inventory [34, 32], consisting in:

– Individual learning (best suited to Assimilators)
– Paired learning (best suited to Convergers)
– Directed group learning (best suited to Divergers)
– Self-determined group learning (best suited to Accommodators)

This classification supports our inductive epistemological approach, allowing
us to contextualize already collected evidence into a broader theoretical frame-
work. Hereafter, we make our considerations for the four learner groups.

4.1 Individual learning

Directed Individual learning (short: Individual Learning) corresponds to the
most common form of teaching, practiced everywhere in practically every sub-
ject and most often associated to Directed Instruction.The typical form consists
of a lecture on a new topic, followed by individual study and exercises, then
finalized in some kind of assessment (test and/or capstone project); teaching is
generally sequential, each concept built on previously acquired knowledge. The
main advantages of this model are its simplicity and efficiency; a single individ-
ual can teach a full class of people at the same time; moreover, we all already
have have plentiful experience with this method. More recently, by using modern



6 P. Ciancarini et al.

technology this model can scale almost indefinitely. Practical examples include
the Khan Academy, Udacity, and other MOOCs. An interesting aspect is that
the sequential progression is ideal for stimulating Computational Thinking con-
cepts — especially Problem Solving. Once a topic is mastered, it can be used
to tackle more complex concepts or deepen and reinforce the significance of an
acquired one. Another advantage is assessment; for instance, it is very easy to
evaluate a program written by a student thanks to standard testing frameworks,
to the point that automatic evaluation is becoming more and more common —
a decisive point in case of e-learning on very large classes.

This model is dominant, however it has several limitations. One of most
important ones is the fairness of the assessment. The difficulty of the assessment
test is usually tailored upon the average student, resulting in a Gaussian curve
grade distribution. In this model, students falling behind at the beginning of
the course rarely have the capacity to catch up, as the time allotted is the
same for every student; additional information, requirements, time–demanding
exercises pile up very quickly. People experiencing learning difficulties have very
few options. Those who can afford it resort to privately paid tuition, but for the
rest the road a failing grade is almost certain. A consequence is the so called
“Ability Myth”: it states that each of us is born with a set of abilities that hardly
change during our lifetime [56]; in fact, this phenomenon is in most cases the
effect of accumulated advantages [54].

Another drawback is the absence of positive social interaction. Direct teacher/
student communication is constrained by the available time. Student/student in-
teraction rarely includes exchanges of ideas or effective cooperation; more often
than not, it results in direct competition or in nonconstructive and illegal help
(i.e. cheating). All of this might have a negative influence on overall motivation,
especially in less-than-average performing students.

In experiments [39, 40], we simulated a working day in a software house; the
teacher assumed the role of the software house boss, and selected a number of
students who were previously categorized as either “good”, “average” or “poor”
programmers. Each student was given a moderately difficult task using a new
work methodology (either TFD or User stories) within a limited time-frame.
Without much surprise, both performance and the perceived utility of the ac-
tivity mirrored their current skill level.

Individual learning help foster Computational Thinking but it is not useful
(or maybe detrimental) to develop social skills needed for Cooperative Think-
ing. According to Kolb’s learning inventory [34], this teaching model best suits
Assimiliative learners, since they like organized and structured understanding
and respect the knowledge of experts. They also prefer to work alone.

4.2 Paired learning

Paired learning (also called Dyadic Cooperative Learning Strategy [53]) is also a
common technique but far less popular than the previous one. The basic principle
involves the teacher posing a question or presenting a problem, then the students



Exploiting agile practices to teach Computational Thinking 7

discuss in pairs and find their own way toward the solution; pair members are
often switched, sometimes even during the activity.

The role of the teacher in this case is quite limited, as she acts as a general
coordinator and facilitator of the class of pairs. In the software development
field, we find an obvious transposition of this model in Pair Programming, one
of the key Agile programming practices and, to a lesser extent, in some training
techniques (Randori and Code Retreats among others [50]).

According to [14], this model has beneficial influence on retention, under-
standing, recall, and elaborate skills at the cognitive level; it is particularly
effective on mood and social skills, and introduces the idea of software being an
iterative, evolutionary process. As it promotes knowledge sharing, it can help
less skilled individuals to improve themselves taking inspiration from their part-
ners. However, it is more difficult to develop a teaching progression using only
this model, and in any event, it would be rather slow. In addition, psychological
and personal factors become important, since partner incompatibilities and so-
cial difficulties might dramatically change both the learning outcomes and the
quality of the code produced. Assessment is more difficult than in the previous
case; though automatic evaluation is still possible, some extra steps are required
by the teacher to deduce the effective contribution of each member of the pair
to the final work.

We tested firsthand this effect in experiments [39, 41]. We proposed the same
method and problems stated in Sect. 4.1, but in this case we paired students ac-
cording to six possible pair types, classified as homogeneous (good-good, average-
average, poor-poor) or as non-homogeneous (good-average, average-poor, good-
poor).

According to results, homogeneous pairs performed generally equal or worse
than their solo counterparts, but non-homogeneous pairs had statistically better
results. In the latter case a form of epistemic curiosity [29] appeared, possibly
unconsciously, and was a key motivating factor for the pair; the resulting in-
teraction helped both to solve the task at hand and to develop social skills.
Computational Thinking was also stimulated, but a little less than with the
previous model, since the “effort” was split and each single task was not really
challenging, requiring expertise more than logical reasoning.

In addition, both students and teachers praised the new methodology and its
positive effect on mood. However, the retention rate was very low, much worse
than expected; in an interview conducted some time after the experiment was
over, students generally only had a vague idea of the techniques used and only
about 5% of them was able to name them correctly.

To summarize, paired learning has beneficial effects on social skills related to
Agile development, and generally is useful in leveling skills upwards. Knowledge
building will however be much slower than in the traditional approach. This
teaching model better suits Convergent learner types, since they want to learn
by understanding how things work in practice, like practical activities and seek
to make things efficient by making small and careful changes.



8 P. Ciancarini et al.

4.3 Directed group learning

Group learning is one of the many facets of Cooperative Learning, which is
becoming fairly common in modern, constructivist-influenced education [6]. It
is also a common practice in some working environments, notably in the health
context for nurses [61]. Group learning in a software engineering lab class is best
exploited by developing a full software project, not simple exercises or abstract
analyses. So, it is natural to join Group Learning and Project-Based Learning
strategies, especially using the Jonassen variant [26]: a complex task taken from
real-life with authentic evaluation, comprehensive of all phases of development.

We are aware that many software development methodologies exist, and each
of them can be transposed in an educational context promoting different behav-
iors and skills. One of them is the Waterfall model, probably the oldest one but
still quite popular in the industry.

Waterfall embodies in many ways all the tenets of our prevailing culture,
such as linear hierarchies, top-down decision making, accepting the assumptions,
acquire all information in order to prepare a detailed plan and then following it
— values that have forged the way traditional education was conceived and in
most cases is still carried out.

A Waterfall school project will see the teacher assume the role similar to
that of a senior project leader, assigning tasks and roles to students according to
their skill, knowledge, and ability and applying a certain degree of control. The
teacher’s role will be very important at the beginning of the project, as students
generally lack the ability to perform a thorough analysis and comprehensive
design phase. As the project continues its course, the role will be more oriented
to control, checking that documents are properly written, modules developed
and tested, directing the flow of the entire operation. Assessing a group project
is considerably more complex that both previous model, since it involves not
only the final product, but also the process used and the interaction among the
student and their relative contributions. To resolve it, usually a combination of
traditional evaluation (automated or not), direct teacher observation and peer
evaluation is used, forcing students to evaluate and reflect on the quality of their
work.

In a different experiment, we decided to give students a very challenging task,
almost impossible to solve. They had to build from scratch a complete dynamic
website, a task we estimated in about 30 man-hours to complete when handled
by experts. We only gave them 6 hours. This forced teams to make hard decision
as to what was the most suitable course of action in order to make the best use
of the allotted time and resources.

Then some extra restraints were imposed on the group, such as:

– A rich set of artifacts, such as a complete SRS, ER-diagrams, management
priorities, UI-Mockups.

– Specific roles (programmer, UI-expert, tester, . . . ) and hierarchies (chief pro-
grammer, for example) were imposed.

– A predefined time schedule.



Exploiting agile practices to teach Computational Thinking 9

From an educational viewpoint, the target product was definitely outside a
single student’s zone of proxymal development [59], but was theoretically doable
as a team effort. From a different viewpoint, such a target looks like a wicked
problem, since students lacked the knowledge and the competence to complete
the task, and were requested to acquire them along the way [60]. The great
amount of information and in general the directive role of the teacher gives the
opportunity to highlight whatever learning goal is deemed important.

Results show that, under these conditions, groups tend to concentrate on
non-functional requirements and process-related goals instead of pursuing the
main goal: delivering a working product to the “customer”. The products, on
average, had very few working features, but the defects were hidden under a
pleasant user interface, close to the one proposed by the “management”. Roles
were interpreted rather closely to the given instructions (barring a few cases
of internal dissent), timing was impeccable, and even the documentation was
acceptable. Teacher-student interactions were not intense, but rather limited to
simple yes-no questions. Students reported great satisfaction for both the activity
and the product realized, asserting it was an activity both useful and fun [40].

To summarize, this teaching model promotes the use of social skills, while
leaving the steering wheel in the hand of the teacher. This power can be used to
provide a meaningful learning path, though slower that Individual Learning and
with a non-trivial evaluation method. It also does not seem to stimulate enough
other interesting skills, such as decision making. It better suits Divergent learner
types, since they and will start from detail to logically work up to the big picture.
They like working with others but prefer things to remain calm.

4.4 Self-directed group learning

This model is a different version of Group Learning, radically different than the
previous one in that students have a strong degree of autonomy. It applies to
K-12, adult education and business/industrial environments, for example [22].

In this case, the teacher becomes a mentor and a facilitator, and invests a
large amount of trust on the learners.

Most of what we said on Project-Based Learning in the previous subsection
holds. In this case, the granted freedom can be a powerful weapon in the hands
of the group, but it might also backfire.

It is easy to see that several Agile values are connected to this learning model:
most prominently, shared responsibility and courage. Agile strongly promotes
an adaptive approach to software development, where each iteration acts as a
feedback for the next one. Teams should be self-organized, and great emphasis
is put on communication, both within the team and with the stakeholders. This
means that the teacher must become part of the team in order to maintain a
high level of communication. It also means that the teacher cannot distribute
grades in a standard way, as he will be directly involved in the process (effectively
becoming a ‘pig‘, and not a ‘chicken‘, referring to the classic Agile metaphor).
Grades should therefore come from reflections, group and/or personal and peer



10 P. Ciancarini et al.

evaluation, and must include an evaluation of teacher work, as any other team
member.

In experiment, we kept the same general structure outlined in section 4.3,
but within the same class we assigned the same project to a different, potentially
equivalent, team. This allowed for a direct comparison of results, since it ruled
out biases due to different teachers, learning environments, or curricula. We
have chosen the Scrum methodology, because it is arguably very different from
Waterfall and it does not really mandate any practices, giving maximum freedom
to the teams [52]. The teacher assumed the role of the Product Owner in this
specific case; alternatively, the Scrum Master role could be chosen as well [40].

The teams were given much less information and limitations with respect to
Waterfall teams:

– A list of prioritized user stories.
– A ‘definition of done’ (as in Scrum): it is a definition of how a result can be

considered to have some value, in terms of simple activities like writing code
in a standard format, adding comments, performing unit testing, etc.

– The sprint length.

Everything else was to be decided by the team. Scrum teams also had the
additional difficulty of having no experience with self-organization, whereas tra-
ditional Waterfall methodologies and roles were taught as part of standard cur-
riculum.

Results show that Agile teams performed generally better than their Wa-
terfall counterpart in the same class with respect to overall product completion
and number of featured delivered. This is not surprising, since Agile privileges
the functional dimension over the non-functional ones. It is interesting to note
that many chose challenging but interesting tasks, possibly failing along the way.
However, with respect to code quality, Agile teams fared worse than their coun-
terparts. First, code was less readable and with worse Cyclomatic Complexity
evaluation; second, the final product on average had severe usability problems,
since this was not an explicitly stated goal. In general, teams underestimated the
effort needed on the first sprint but guessed much better their second sprint, dur-
ing which they were much more productive. Teacher-student interaction was also
not very intense – suddenly cooperating at peer level with an older, experienced
superior is not an easy task for anyone. Students reported great satisfaction for
this activity, slightly more than for the previous model.

So, both types of Group learning (directed like Waterfall and self-directed like
Scrum) missed the main point of the activity, which was to provide a valuable
product for the customer. What is interesting is the motivation for such failures.
Scrum teams concentrated their effort to reach a goal, possibly a difficult one,
displaying Courage, a key XP value. Waterfall groups tended to “play safe”, and
concentrated on less risky objectives (user interface, process oriented goals) and
working on what they most comfortable with, a pattern more in line with logical
reasoning.

The self-directed group model strongly promotes the use of social skills and
other qualities relevant to Cooperative Thinking. However, the learning rate



Exploiting agile practices to teach Computational Thinking 11

Fig. 1. Teaching activities mapped to learner types, following the taxonomy of [34]

could be exceedingly slow; moreover, evaluation requires great attention and
balance. It better suits Accomodative learner types, since they display a strong
preference for doing rather than thinking. They do not like routine tasks and
will take creative risks to see what happens.

5 Implications for practice

Kolb’s model identifies four basic types of learning experiences (Active Experi-
mentation, Concrete Experience, Reflective Observation) and four basic types of
learners (Converging, Accommodating, Diverging, Assimilating). Kolb suggests
to alternate these learning modalities in order to stimulate different aspects of
the learners’ mind, even if an individual is more oriented to a specific king of
learning activity. We therefore classified four types of learning experiences specif-
ically related to lab classes that can be appealing to a particular learner type,
as shown in Fig. 1.

Table 2 summarizes the content of this section. Traditional teaching con-
centrates on individual learning, thus favoring Assimilating students; we argue
that a more balanced approach is beneficial in general, and in particular can
stimulate and develop focused social skills that are essential for developing an
effective Cooperative Thinker.

Table 2. Learning model influence on learner and teacher’s role

Teacher
Role

Learning
Path

Computational
Thinking

Social
skills

Agile
skills

Ease of
Evaluation

Preferred Kolb
Learner Type

Individual Learning Boss +++ ++ – – ++ Assimilator

Paired Learning Facilitator - + + ++ + Convergent

Directed
group learning

Project
Leader

+ = ++ + - Divergent

Self-directed
group learning

Teammate - = +++ +++ – Accommodator



12 P. Ciancarini et al.

We understand that Kolb’s classification is crude, as it cannot capture the
complexity of teaching and learning in a social environment, be it at school or
on the workplace; yet, even this simple model is powerful enough to analyze the
situation and plan activities to reach our goals.

Cooperative Thinking is a general theoretical concept, just like Computa-
tional Thinking. Educators should do their best in order to have students un-
derstand and be able to put theory into practice. Is the educational system
able to accept this change? Our discussion concentrates on teaching software
development lab classes.

Usually, only individual performances are evaluated in lab classes of both
high schools and colleges alike: it is less common to evaluate the teamwork.
We will now describe some teaching models that can be used to promote the
emergence of the two pillars of Cooperative Thinking: Computational Thinking
and Agile practices. We have evaluated the impact on students designing and
performing a series of learning experiments that exposed software development
students to Agile practices and values.

In this article we analyzed a series of teaching strategies for software devel-
opment, each with advantages and disadvantages and having a different impact
on cognitive, reasoning and social skills that collectively concur to create what
we called Cooperative Thinking.

Traditionally, education has considered literacy and knowledge in a broad
sense. Consequently, the quality of education is often tied to fundamental skill
expertise; one of the most recognized indicator is the result of the international
PISA test, that evaluates how effective a country has been at deploying their
prescribed math, science, and reading curricula. In this perspective, it makes
perfect sense for educational institutions worldwide (and universities foremost)
to favor individual learning as the primary – if not only – teaching strategy.
For instance, a consequence of this is that several efforts are spent in schools
on overcoming individual differences among students: see for instance the well
known discussion of the “Matthew effect” in [54], which is a social selection
process resulting in a concentration of resources and talent.

However, in the future, “pure” knowledge might become less important, even
to the point of becoming a commodity, and soft skills could raise in importance.
An educational system focusing on hard, technical skills could have difficulties
in promoting soft skills. As [64] pointed out, there is an inverse correlation be-
tween PISA test scores and entrepreneurial capacity, a measured by the Global
Entrepreneurship Monitor (GEM), the world’s largest entrepreneurship study.
Specifically, the countries with the top PISA scores had an average GEM:PISA
ratio of less than half of the mid- and low-scoring countries, indicating a po-
tential shortfall in PISA’s measuring purpose to understand if students are
“well-prepared to participate in society” [42]. And this might as well be true
in Computer Science.

Notably, the ability to solve complex issues or wicked problems, is a require-
ment for new product development and innovation & entrepreneurship in general
[7]. Wicked problems usually have no single perfect solution but many Pareto-



Exploiting agile practices to teach Computational Thinking 13

optimal solutions. The traditional educational paradigm is not tailored to train
people able to handle similar situations; PISA-like evaluations are meaningless to
determine the educational system’s efficiency, since the only offers an evaluation
of the individual.

So, the gap between a formal educational background and real-life wicked
and complex problems becomes larger. Actually, it will increase along with Dig-
ital Transformation processes, where the level of predictability decreases and
uncertainties increases [45].

Therefore, the introduction of other teaching strategies that foster social
skills and cooperation is very important, and should also be factored in grading
activities. Note that we do not advocate a complete suppression of the Individ-
ual Learning strategy; on the contrary, it should be complemented with other
strategies in order to obtain an overall balanced and blended mix tailored to
specific situations – there is no silver bullet in education. This proposal will also
have the extra bonus of potentially appeal to all learner types, even those that
traditionally are less inclined to pick Computer Science as their course of study.

Given all the above considerations, we recommend all strategies we men-
tioned be used in teaching software development, in order to promote different
but equally important skills and possibly favoring different learning styles. This
strategy mix should begin as soon as possible and continue throughout the en-
tire study path, up to and including the university tier. Otherwise, it might be
too late to develop the full potential of Agile-related skills and, consequently,
Cooperative Thinking.

5.1 Learning path

Most CS courses are strongly oriented toward individual learning, the goal being
to introduce and grasp the basic elements of CS and, specifically, programming
[49]; a short to medium-length programming project of average difficulty is usu-
ally included.

As soon as possible, Pair Learning should also be presented. Specifically, Pair
Programming should be introduced first and actively enforced as one of the main
practices for class exercises throughout the course. Other Agile practices could be
introduced (such as Test-First Development, Continuous integration, ...) along
with the necessary software tools (like git or Jira). A project that verifies what
students learned should be simple in terms of programming complexity but rich
in process experiences, in that elements of Agile must be used and their use
verified.

Next, forming the team is an important factor. We know that simply putting
together people and telling them to work on a project is not enough to have
an even decently efficient group. Preparation is in order, requiring some careful
people selection, team-building exercises, and some short project to test how the
teams work. Finally, a team-oriented project of moderate to high difficulty and
length should be realized by the students.

The final step is, of course, proposing a demanding project to the teams and
give them ample freedom. At this point students should have a solid knowledge



14 P. Ciancarini et al.

of the programming language and development methods, a grasp of basic Ag-
ile practices, and some working experience with all necessary tools; moreover
teams should know their strengths and weaknesses. This activity can actually
be a course capstone project and should contribute significantly to the students’
grade.

Our proposal requires formalization, testing, and formal validation. Though
every step is nothing new or complicated, the overall teach process is. Our re-
search group is currently working on a comprehensive proposal and its field
testing in both K-12 and university classes.

5.2 The influence of the context

We discuss now the validity of this study in the different contexts of High School
and University classes.

First, we examine some distinctive features of learning in high school:

– The learning activities encompass several years. During this long time period,
teachers and learners get to know well each other and develop a relationship
that has strong effect on the quality of their cooperation.

– The evaluation of the students is based on several factors. One is certainly the
overall performance (tests, lab results), but many other aspects are factored
in: initial level, handicaps, effort, proper behavior. This implies that the
teacher must exert some form of control and surveillance, even due to age
considerations.

– Learning goals tend to be broad-scoped, leaving advanced topics only to the
best students.

The University learning context seems to be completely different. Instructors
usually teach for a single semester, a time insufficient to establish a personal
relationship. Performance evaluation is far more important, overshadowing other
factors; standardized tests and procedures are used, focused on both general and
specific topics. Higher levels of personal responsibility and self-organization are
expected, so teacher control is generally limited.

However, in the specific case at hand, differences are not so well marked.
We performed our experiments in high school courses (total: about 250 stu-
dents) which are programming intensive, featuring around nine programming
hours - labs included - per week for three full years. They cover basic and in-
termediate programming issues, including dynamic data structures, recursion,
and databases for an average of 300 programming class hours per year, personal
study not included. While we do not claim that this kind of education to soft-
ware development is equivalent to a standard undergraduate level lab class in
software development, it is undoubtedly comparable, on average compensating
subject depth and personal motivation with more time spent in practical expe-
riences. Our experiments on undergraduate students (total: about 90 students)
confirm these impressions.

Not surprisingly, we found that our teaching strategies had to be adapted
to the different educative levels. For example, students in high schools require



Exploiting agile practices to teach Computational Thinking 15

learning activities on Agile to be repeated and, at least partially, integrated into
standard teaching activities. Failing to do so inexorably results in limited long-
term retention, as some interviews sadly demonstrated. Moreover, students must
concentrate on Agile practices rather than on the overall development process;
they are only able to handle a software project of limited scope and complexity,
so setting up a full-fledged development environment (be it Agile or else) looks
like an overkill.

Conversely, undergraduates are able to make the most out of one-shot activi-
ties; they are expected to reinforce their knowledge and skills with personal work,
and most of them indeed do. They have sufficient capabilities and time to prop-
erly apply a standard Agile development cycle, especially in capstone projects.
The problem in this case is the large amount of topics to cover: the instructor
has the responsibility to select the topics that must be taught. In addition, un-
dergraduates have a higher degree of freedom, so they cannot be forced to adopt
a given method or practice. The effective use of Agile by students depends on
their personal and, for some part, on the charisma of the instructors.

6 Discussion

In 2006, Jeannette Wing’s paper defined and popularized the concept of Com-
putational Thinking [62], portrayed as a fundamental skill in all fields, not only
in Computer Science. It is a way to approach complex problems, breaking them
down in smaller problems (decomposition), taking into account how similar prob-
lems have been solved (pattern recognition), ignoring irrelevant information (ab-
straction), and producing a general, deterministic solution (algorithm).

Even after more than a decade, the impact of this idea is strong. Eventually,
some governments realized that future citizens should be creators in the digital
economy, not just consumers, and also become active citizens in a technology-
driven world.

Computational Thinking needs to be properly learned and, therefore, is being
inserted as a fundamental topic in school programs worldwide. This is a welcomed
change away from old educational policies that equated computer literacy in
schools to the ability of using productivity tools for word processing, presenting
slide shows, rote learning of basic concepts. Though useful in the past, they are
currently outdated and even possibly harmful. The US initiatives “21st Century
Skills” [58] and curriculum redefinition, along with “Europe’s Key Skills for
Lifelong Learning” [19] should be viewed in this perspective.

However, these approaches might not be sufficient in the long run. Current
educational approaches concentrate on coding (as an example, consider the Hour
of Coding initiative), but this it not the end to it. Computational Thinking is
made of complex, tacit knowledge, that overcomes limited resources and requires
deep engagement, lots of deliberate practice, and expert guidance. Coding is one
aspect, and not necessarily the most important one.

Tasks solved by software systems are becoming more complex by the day, and
many of these in the real world could be classified as wicked problems [47]. There



16 P. Ciancarini et al.

is no single “best solution” to many such problems, only Pareto-optimal ones
which may change over time. In this situation, satisfying expectations and re-
quirements becomes harder and harder as they are beyond the limit of solvability
for any single programmer.

This is well known in the fields of Science and Business. The most common
approach to trying to solve wicked problems in these fields is by forming teams
including people with complementary backgrounds, trained to face problems
and reach the goal – together. These new cooperative entities benefit from a
high degree of independence and autonomy to deal with the assigned task; the
idea is to solve a problem attacking it from different points of view.

Even if Computational Thinking has been defined as a problem-solving skill,
and has benn taken as the basis for several ongoing activities, by itself alone it
does not offer the variety of viewpoints required to solve difficult or wicked prob-
lems. Computational Thinking has traditionally been considered an individual
skill, and taught as such. Teamwork and soft skills are generally not factored in,
and even shunned as “cheating” in some introductory programming courses.

In our view, the general approach to Computational Thinking needs to be
updated, by enhancing it with a complementary concept: Agile values and prac-
tices. The Agile Manifesto was published in 2001, just a few years before Wing’s
paper. In just 68 words, it proposed a quite original perspective on software
development, recalling values that clashed with the established culture of time,
based on top-down hierarchies, linear decision making and, in general, pursuing
unsustainable management plans. The most significant change introduced by the
Agile movement is the paramount importance assigned to face-to-face commu-
nication and social interaction, superseding the internal organizational rigidity,
documentation, contracts, roles, and more [46].

Including some Agile principles and learning-as-execute experiences in train-
ing for Computational Thinking is beneficial. We name Cooperative Thinking
this Agile extension of Computational Thinking, and define it as follows:

“Cooperative Thinking is the ability to
describe, recognize, decompose, and computationally solve problems

teaming in a socially sustainable way”

This definition joins the basic values of both Computational Thinking and
the Agile Manifesto.

Computational Thinking is based on the power of abstraction, problem recog-
nition and decomposition, and algorithms. Agile principles include self-organizing
teams, interaction and communication, and shared responsibility. Both Compu-
tational Thinking and Agile value the concepts of evolution and reflection of
problems and solutions. Both approaches share the idea of problem solving by
incremental practices based on learning by trial and error. Moreover, our defini-
tion of Cooperative Thinking underlines sustainability, since “solutions” as such
have little impact, if not related to the available resources.

In sum, Computational Thinking is the individual skill to solve problems in
an effective way. We found that Agile values are central not only for developers



Exploiting agile practices to teach Computational Thinking 17

Fig. 2. Cooperative Thinking, Computational Thinking and Agile values breakdown
(according to Computing at School [13] and [3])

but also for educating individuals. Cooperative Thinking adds a variety of points
of view required to solve really demanding and complex tasks, like for instance
developing critical systems [9, 43, 51]. Enhancing Computational Thinking with
Agile values and principles allows to exploit the power of a team of diverse
backgrounds towards a common goal. Being mentally flexible, understanding
the others’ points of view and synthesizing a common solution are crucial skills
for teaming developers.

7 Conclusions

In this paper we explored Cooperative Thinking, a concept that expands Com-
putational Thinking embracing Agile values. The proposal is graphically sum-
marized in Fig. 2.

Cooperative Thinking is the extension of Computational Thinking with Agile
Values. We considered the skill breakdown proposed for Computational Think-
ing by Computing at School [13] and grouped the skills into three broad cat-
egories: Problem solving, Evolution, and Reflection. Correspondingly, we con-
sidered Kent Beck’s XP values and practices list [3] as representative of Agile
values and practices in general; list items were also grouped in three categories:
Social Skills, Evolution, and Reflection.

Cooperative Thinking is a complex skill to acquire and master, but in our
view, is the way to go to obtain teaming individuals able to tackle and resolve
the challenges and questions that the future will present them.

We examined four different learning models, each with a different balance of
traditional, Agile, and Cooperative learning, showing the impact they had on
students in developing Cooperative Thinking. Specifically, Individual learning is
strongly related to Problem Solving, Social Skills to Self-directed group learning;
all other aspects have a varying degree of relationship to the different models.



18 P. Ciancarini et al.

Experiments showed a significant effect on the learning outcomes. Cooper-
ative Thinkers will enjoy an edge on the job marketplace, making them more
flexible, socially aware, and more able to handle future challenges, be they re-
lated to software development or not.

In order to educate students to Cooperative Thinking, we suggest that a mix
of learning strategies be used, in order to expose students to Agile practices
and values and develop teaming skills without forgetting basic Computational
Thinking skills, such as abstraction. While we do not claim the superiority of
Agile practices as such, we do observe their effectiveness as enablers of Cooper-
ative Thinking, since they promote interaction, force efficient resource handling,
and are strongly goal-oriented, substantially more than individual learning.

We propose to define and evaluate innovative educational programs promot-
ing Cooperative Thinking. Mixed methods assessments for educational construct
validation with Structural Equation Modeling as also fine granular performance
indicator for Pareto-optimal solutions need to be validated. However, finding
the exact blend of teaching strategies will be the real challenge for the software
engineering community; this is exactly what we are investigating now, both at
K-12 and undergraduate level.

Another line of research that we intend to pursue concerns the constructs
which constitute Cooperative Thinking, especially concerning teaming [16]. For
instance, the dynamic structure of teams is interesting: we have seen in the ex-
periments that in pair programming asymmetry of competences is quite effective.
In teams including more people, say four or five students, we intend to study
the emergence of mentors as facilitators rather than leaders, and the impact of
such figures on self-organization of teams.

References

1. Amabile, T., Fisher, C., Pillemer, J.: Ideo’ s culture of helping. Harvard Business
Review 92(1-2), 54–61 (2014)

2. Barr, V., Stephenson, C.: Bringing Computational Thinking to K-12: what is in-
volved and what is the role of the computer science education community? ACM
Inroads 2(1), 48–54 (2011)

3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. Addis-
onWesley, 2 edn. (2004)

4. Blackwell, A., L. Church, L., T. Green, T.R.: The abstract is ’an enemy’: Alterna-
tive perspectives to Computational Thinking. In: Proc. 20th Annual Workshop of
the Psychology of Programming Interest Group. vol. 8, pp. 34–43 (2008)

5. Bobrov, E., Bucchiarone, A., Capozucca, A., Guelfi, N., Mazzara, M., Naum-
chev, A., Safina, L.: DevOps and its Philosophy: Education Matters! CoRR
abs/1904.02469 (2019), http://arxiv.org/abs/1904.02469

6. Brown, S.: 500 tips on group learning. Routledge (2014)
7. Buchanan, R.: Wicked problems in design thinking. Design issues 8(2), 5–21 (1992)
8. Carter, L.: Ideas for adding soft skills education to service learning and capstone

courses for computer science students. In: Proceedings of the 42Nd ACM Technical
Symposium on Computer Science Education. pp. 517–522. SIGCSE ’11, ACM,
New York, NY, USA (2011). https://doi.org/10.1145/1953163.1953312, http://

doi.acm.org/10.1145/1953163.1953312



Exploiting agile practices to teach Computational Thinking 19

9. Ciancarini, P., Messina, A., Poggi, F., Russo, D.: Agile knowledge engineering
for mission critical software requirements. In: Nalepa, G., Baumeister, J. (eds.)
Synergies Between Knowledge Engineering and Software Engineering, Advances in
Intelligent Systems and Computing, vol. 626, pp. 151–171. Springer (2018)

10. Conway, M.: How do committees invent. Datamation 14(4), 28–31 (1968)
11. Cooper, H.: Scientific guidelines for conducting integrative research reviews. Re-

view of Educational Research 52(2), 291–302 (1982)
12. Cooper, H., Hedges, L., Valentine, J.: The handbook of research synthesis and

meta-analysis. Sage (2009)
13. Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S., Ng, T., Selby, C., Woollard,

J.: Computational thinking: A guide for teachers. Computing at Schools (2015)
14. Dansereau, D.F.: Cooperative learning strategies. In: Weinstein, C., Goetz, E.,

Alexander, P. (eds.) Learning and study strategies: Issues in assessment, instruc-
tion, and evaluation, pp. 103–120. Academic Press (1988)

15. Denning, P.: Remaining trouble spots with Computational Thinking. Communica-
tions of the ACM 60(6), 33–39 (2017)

16. Dingsøyr, T., Fægri, T.E., Dyb̊a, T., Haugset, B., Lindsjørn, Y.: Team performance
in software development: Research results versus agile principles. IEEE Software
33(4), 106–110 (2016)

17. Edmonson, A.: Teaming to Innovate. Wiley (2013)
18. Edmonson, A.: Wicked Problem Solvers. Harvard Business Review 94(June), 52

(2016)
19. European Community: Key competences for lifelong learning:

European Reference Framework. http://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=LEGISSUM:c1109 (2007)

20. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: Future of Software Engineering. pp. 37–54. FOSE ’07, IEEE Com-
puter Society, Washington, DC, USA (2007)

21. Glass, G.: Primary, secondary, and meta-analysis of research. Educational Re-
searcher 5(10), 3–8 (1976)

22. Guglielmino, L.M., Guglielmino, P.J.: Practical experience with self-directed learn-
ing in business and industry human resource development. New Directions for
Adult and Continuing Education 1994(64), 39–46 (1994)

23. Henderson, P.B.: Ubiquitous Computational Thinking. IEEE Computer 42(10)
(2009)

24. Hoskey, A., Zhang, S.: Computational Thinking: what does it really mean for the
K-16 computer science education community. Journal of Computing Sciences in
Colleges 32(3), 129–135 (2017)

25. Howard, R.A., Carver, C.A., Lane, W.D.: Felder’s learning styles, Bloom’s taxon-
omy, and the Kolb learning cycle: tying it all together in the CS2 course. In: ACM
SIGCSE Bulletin. vol. 28, pp. 227–231. ACM (1996)

26. Hung, W., Jonassen, D.H., Liu, R., et al.: Problem-based learning. Handbook of
research on educational communications and technology 3, 485–506 (2008)

27. Jackson, G.: Methods for integrative reviews. Review of Educational Research
50(3), 438–460 (1980)

28. Johnson, D., Johnson, R.: Learning together and alone: Cooperative, competitive,
and individualistic learning. Prentice-Hall (1987)

29. Johnson, D., Johnson, R., Smith, K.: Active learning: Cooperation in the college
classroom. ERIC (1998)

30. Johnson, D., et al.: Cooperative learning in the classroom. ERIC (1994)



20 P. Ciancarini et al.

31. Johnson, M.: Should my kid learn to code? http://googleforeducation.

blogspot.gr/2015/07/should-my-kid-learn-to-code.html (2015)
32. Joy, S., Kolb, D.A.: Are there cultural differences in learning style? International

Journal of Intercultural Relations 33(1), 69–85 (2009)
33. Katz, D.L.: Conference report on the use of computers in engineering classroom

instruction. Communications of the ACM 3(10), 522–527 (1960)
34. Kolb, D.: Learning Style Inventory technical manual. McBer Boston, MA (1976)
35. Kropp, M., Meier, A.: Teaching agile software development at university level:

Values, management, and craftsmanship. In: Proc. 26th IEEE Conf. on Software
Engineering Education and Training (CSEE&T). pp. 179–188 (2013)

36. Kropp, M., Meier, A.: New sustainable teaching approaches in software engineering
education. In: Proc. IEEE Global Engineering Education Conference (EDUCON).
pp. 1019–1022 (2014)

37. Meerbaum-Salant, O., Hazzan, O.: An agile constructionist mentoring methodol-
ogy for software projects in the high school. ACM Transactions on Computing
Education 9(4) (2010)

38. Meier, A., Kropp, M., Perellano, G.: Experience Report of Teaching Agile Collabo-
ration and Values: Agile Software Development in Large Student Teams. In: Proc.
29th IEEE Conf. on Software Engineering Education and Training (CSEE&T)).
pp. 76–80 (2016)

39. Missiroli, M., Russo, D., Ciancarini, P.: Learning agile software development in
high school: an investigation. In: Proc. 38th Int. Conf. on Software Engineering
(ICSE). pp. 293–302 (2016)

40. Missiroli, M., Russo, D., Ciancarini, P.: Agile for Millennials: a comparative study.
In: Proc. 1st Int. Workshop on Software Engineering Curricula for Millennials. pp.
47–53. IEEE Press (2017)

41. Missiroli, M., Russo, D., Ciancarini, P.: Teaching test-first programming: assess-
ment and solutions. In: COMPSAC, 2017. IEEE (2017)

42. Pasupathy, S., Asad, A., Teng, P.Y.: Rethinking k–20 education trans-
formation for a new age. www.atkearney.com/about-us/social-impact/

related-publications-detail/-/asset_publisher/EVxmHENiBa8V/content/

rethinking-k-20-education-transformation-for-a-new-age/10192 (2016)
43. Poggi, F., Rossi, D., Ciancarini, P., Bompani, L.: An application of Semantic Tech-

nologies to self adaptations. In: Proc. Int. Conf. on Research and Technologies for
Society and Industry Leveraging a better tomorrow (RTSI). pp. 1–6. IEEE (2016)

44. Polya, G.: How to solve it: A new aspect of mathematical method. Princeton
university press (1957)

45. Raskino, M., Waller, G.: Digital to the Core: Remastering Leadership for Your
Industry, Your Enterprise, and Yourself. Routledge (2016)

46. Rigby, D., Sutherland, J., Takeuchi, H.: Embracing Agile. Harvard Business Review
94(5), 40–50 (2016)

47. Rittel, H., Webber, M.M.: 2.3 planning problems are wicked. Polity 4, 155–169
(1973)

48. Rivera-Ibarra, J.G., Rodŕıguez-Jacobo, J., Serrano-Vargas, M.A.: Competency
framework for software engineers. In: Proc. 23rd IEEE Conf. on Software Engi-
neering Education and Training (CSEE&T). pp. 33–40 (2010)

49. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: A
review and discussion. Computer Science Education 13(2), 137–172 (2003)

50. Rooksby, J., Hunt, J., Wang, X.: The theory and practice of Randori coding dojos.
In: Cantone, G., Marchesi, M. (eds.) Proc. 15th Int. Conf. on Agile Software De-



Exploiting agile practices to teach Computational Thinking 21

velopment (XP2014). Lecture Notes in Business Information Processing, vol. 179,
pp. 251–259. Springer (2014)

51. Rossi, D., Poggi, F., Ciancarini, P.: An application of Semantic Technologies to
self adaptations. In: Proc. 33rd Symposium on Applied Computing. pp. 128–137.
ACM (2018)

52. Rubin, K.: Essential Scrum: a practical guide to the most popular Agile process.
AddisonWesley (2012)

53. Slavin, R.: Cooperative learning. Learning and Cognition in Education pp. 160–166
(2011)

54. Stanovich, K.: Matthew effects in reading: Some consequences of individual dif-
ferences in the acquisition of literacy. Reading Research Quarterly pp. 360–407
(1986)

55. Steghöfer, J.P., Knauss, E., Alégroth, E., Hammouda, I., Burden, H., Ericsson, M.:
Teaching Agile: addressing the conflict between project delivery and application
of Agile methods. In: Proc. 38th Int. Conf. on Software Engineering (ICSE). pp.
303–312. ACM (2016)

56. Stobart, G.: The Expert learner. McGraw-Hill Education (UK) (2014)
57. Thomas, L., Ratcliffe, M., Woodbury, J., Jarman, E.: Learning styles and per-

formance in the introductory programming sequence. In: ACM SIGCSE Bulletin.
vol. 34, pp. 33–37. ACM (2002)

58. Vv.Aa.: The Glossary of Education Reform: 21st century skills.
http://edglossary.org/21st-century-skills/ (2016)

59. Vygotsky, L.: Zone of proximal development. Mind in society: The development of
higher psychological processes 5291, 157 (1987)

60. Weber, E.P., Khademian, A.M.: Wicked problems, knowledge challenges, and col-
laborative capacity builders in network settings. Public administration review
68(2), 334–349 (2008)

61. White, P., Rowland, A., Pesis-Katz, I.: Peer-led team learning model in a graduate-
level nursing course. The Journal of Nursing Education 51(8), 471–475 (2012)

62. Wing, J.: Computational Thinking. Communications of the ACM 49(3), 33–35
(2006)

63. Yadav, A., Good, J., Voogt, J., Fisser, P.: Computational thinking as an emerg-
ing competence domain. In: Mulder, M. (ed.) Competence-based Vocational and
Professional Education, Technical and Vocational Education and Training: Issues,
Concerns and Prospects, vol. 23, pp. 1051–1067. Springer (2017)

64. Zhao, Y.: World class learners: Educating creative and entrepreneurial students.
Corwin Press (2012)


